Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Second sight for blindness


Utilising the same principle that lets a TV camera transform external images into electric signals, IST project OPTIVIP has tested an implantable visual prosthesis to stimulate the optic nerve and allow limited sight for certain sufferers of blindness.

The method used by the four-year project is based on the stimulation of the optic nerve by a cuff electrode. The prosthesis is operational only if the optic nerve is still healthy in spite of the complete blindness. For this reason, OPTIVIP has targeted retinitis pigmentosa, a disease that leads to the premature ageing and a disappearance of the retina receiving cells that leads to blindness over time. Hereditary in 60 per cent of the cases, it occurs to roughly 1 out of every 5,000 women and 1 out of every 4,000 men.

The origins of the project can be traced to February 1998, when within the framework of the ESPRIT project MiViP, an electrode designed to stimulate the optic nerve was implanted in a volunteer who was completely blind due to retinitis pigmentosa. The use of this electrode made possible the electrical stimulation of the optic nerve by means of external equipment. This revealed numerous successful visual perceptions called phosphenes, which are apparitions of luminous sensations, and it was decided to implant a telemetrically controlled neurostimulator in the same patient.

Following up these discoveries, the OPTIVIP project developed a system that works in the following ways. A small camera fastened on glasses picks up an image of what appears in the direction of the glance. The components of the prosthesis are connected between the camera and the stimulation electrode, which contains eight contacts that sends signals to some packets of optic nerve fibres, provoking the phosphenes.

The implanted stimulator produces the electric currents that are applied to the contacts of the electrode according to orders transmitted by the antenna. The heart of the implanted stimulator is a specific integrated circuit that takes care of the demodulation functions of the signal received from the antenna, formats the stimulation currents, and takes measurements. Its electric power is provided through a transcutaneous link (ie a small transformer with coils that act as antennas) implanted behind the ear and the outside.

After learning how to control the visual sensations generated by the optic nerve stimulation, OPTIVIP developed some practical uses of the system, which it documented in a report published in October 2003. Shapes or characters projected on a screen can now be recognised by the patient thanks to the prosthesis. During a recognition test of one out of 45 patterns, 87 per cent of the answers were correct. The report concluded that the implantation brought "good results" and the consortium has "made a step forward" from the original tests.

"Thanks to this system, our volunteer has leaned how to recognise signs looking like block capitals. In a simplified environment, she can also identify objects laying on a table and grasp them thanks to the prosthesis," says Claude Veraart, head of biomedical aspects within the project. While these results may seem modest, he adds that they are important insofar as numerous possibilities of improvement have been identified. Also, important is the fact that the system is perfectly tolerated by the wearer. No deterioration could be noticed during the five years of evaluation, due to the use of biocompatible materials that resist their environment without aggressing it.

With such a promising future, "it was decided to continue the work while widely improving the system technically and carrying out an implantation in several new volunteers," says Charles Trullemans, head of system engineering for the project. "From the technical point of view, the prototypes are close to being delivered for implantation. From the biomedical point of view, the implantation is going to occur within a few months." However, he notes the project is a pre-clinical test, and that actual commercialisation is not foreseen for several years.

Beyond the implanted prosthesis, the consortium sees additional potential for the technology that is being developed. According to them, the results of the project will in a short time enable the availability of several products in a wider application field, such as electrodes for neural stimulation, neuronal stimulators with high-speed, bi-directional transcutaneous links for general use, and several models of external processors with high computing power.

Charles Trullemans
Université Catholique de Louvain
DICE - Unite des Dispositifs et Circuits Electroniques
1 Place de l’Université
B-1348 Louvain-la-Neuve
Tel: +32-10-472567
Fax: +32-10-472598

Source: Based on information from OPTIVIP

Tara Morris | IST Results
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>