Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second sight for blindness

20.04.2004


Utilising the same principle that lets a TV camera transform external images into electric signals, IST project OPTIVIP has tested an implantable visual prosthesis to stimulate the optic nerve and allow limited sight for certain sufferers of blindness.



The method used by the four-year project is based on the stimulation of the optic nerve by a cuff electrode. The prosthesis is operational only if the optic nerve is still healthy in spite of the complete blindness. For this reason, OPTIVIP has targeted retinitis pigmentosa, a disease that leads to the premature ageing and a disappearance of the retina receiving cells that leads to blindness over time. Hereditary in 60 per cent of the cases, it occurs to roughly 1 out of every 5,000 women and 1 out of every 4,000 men.

The origins of the project can be traced to February 1998, when within the framework of the ESPRIT project MiViP, an electrode designed to stimulate the optic nerve was implanted in a volunteer who was completely blind due to retinitis pigmentosa. The use of this electrode made possible the electrical stimulation of the optic nerve by means of external equipment. This revealed numerous successful visual perceptions called phosphenes, which are apparitions of luminous sensations, and it was decided to implant a telemetrically controlled neurostimulator in the same patient.


Following up these discoveries, the OPTIVIP project developed a system that works in the following ways. A small camera fastened on glasses picks up an image of what appears in the direction of the glance. The components of the prosthesis are connected between the camera and the stimulation electrode, which contains eight contacts that sends signals to some packets of optic nerve fibres, provoking the phosphenes.

The implanted stimulator produces the electric currents that are applied to the contacts of the electrode according to orders transmitted by the antenna. The heart of the implanted stimulator is a specific integrated circuit that takes care of the demodulation functions of the signal received from the antenna, formats the stimulation currents, and takes measurements. Its electric power is provided through a transcutaneous link (ie a small transformer with coils that act as antennas) implanted behind the ear and the outside.

After learning how to control the visual sensations generated by the optic nerve stimulation, OPTIVIP developed some practical uses of the system, which it documented in a report published in October 2003. Shapes or characters projected on a screen can now be recognised by the patient thanks to the prosthesis. During a recognition test of one out of 45 patterns, 87 per cent of the answers were correct. The report concluded that the implantation brought "good results" and the consortium has "made a step forward" from the original tests.

"Thanks to this system, our volunteer has leaned how to recognise signs looking like block capitals. In a simplified environment, she can also identify objects laying on a table and grasp them thanks to the prosthesis," says Claude Veraart, head of biomedical aspects within the project. While these results may seem modest, he adds that they are important insofar as numerous possibilities of improvement have been identified. Also, important is the fact that the system is perfectly tolerated by the wearer. No deterioration could be noticed during the five years of evaluation, due to the use of biocompatible materials that resist their environment without aggressing it.

With such a promising future, "it was decided to continue the work while widely improving the system technically and carrying out an implantation in several new volunteers," says Charles Trullemans, head of system engineering for the project. "From the technical point of view, the prototypes are close to being delivered for implantation. From the biomedical point of view, the implantation is going to occur within a few months." However, he notes the project is a pre-clinical test, and that actual commercialisation is not foreseen for several years.

Beyond the implanted prosthesis, the consortium sees additional potential for the technology that is being developed. According to them, the results of the project will in a short time enable the availability of several products in a wider application field, such as electrodes for neural stimulation, neuronal stimulators with high-speed, bi-directional transcutaneous links for general use, and several models of external processors with high computing power.

Contact:
Charles Trullemans
Université Catholique de Louvain
DICE - Unite des Dispositifs et Circuits Electroniques
1 Place de l’Université
B-1348 Louvain-la-Neuve
Belgium
Tel: +32-10-472567
Fax: +32-10-472598
Email: Ctrullemans@dice.ucl.ac.be

Source: Based on information from OPTIVIP

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=64743

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>