Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Exercise Hypertension’ occurs when cells can’t ’relax,’ Hopkins researchers find

07.04.2004


So-called "exercise hypertension," an abnormally high spike in blood pressure experienced by generally healthy people during a workout, is a known risk factor for permanent and serious high blood pressure at rest. But who gets it, and why, has been largely unknown.



Now, Johns Hopkins scientists say they have reason to believe that the problem is rooted in the failure of cells that line the blood vessels to allow the arteries to expand to accommodate increased blood flow during exertion.

"Our study shows that this impaired ability of the endothelial cells, which control large blood vessel relaxation, is a potential cause of exercise hypertension," says Kerry J. Stewart, Ed.D., lead study author and director of clinical exercise physiology at Hopkins. "Because as many as 90 percent of adults are at risk for developing high blood pressure, knowing this may point to a cellular target for preventive therapies."


Normally during exercise, blood pressure increases to push the flow of oxygen-rich blood throughout the body. However, in some individuals, the response to exercise is exaggerated. Instead of reaching a systolic (upper number) blood pressure of around 200 mmHg at maximal exercise, they spike at 250 mmHg or higher.

For the study, published in the April issue of the American Journal of Hypertension, the investigators evaluated 38 men and 44 women ages 55 to 75 who had untreated mild hypertension but were otherwise healthy. Their blood pressures at rest ranged from 130 to 159 mmHg systolic (the upper number) and 85 to 99 mmHg diastolic (the lower number).

To measure endothelial function, the researchers first used ultrasound to measure the size of a large artery in the arm. Next they put a tight blood pressure cuff on one of the subjects’ arms for five minutes to stop blood flow to the arm, then deflated the cuff, causing a surge of blood flow. They then repeated the artery size measurement, comparing it to the resting measure of the artery. The ability of the blood vessels to expand under these conditions is an indicator of endothelial function.

In a second test, they examined blood vessel stiffness -- a marker of early heart disease -- by using ultrasound to measure how fast blood traveled from arteries in the subjects’ necks to their legs with each heart beat. Because stiff blood vessels do not absorb any of the pressure behind the blood flow, the faster the blood travels, the more stiff the vessel is. They compared these readings with blood pressure measures taken at rest and while the participants walked to maximal effort on a treadmill.

In their analysis, researchers found that higher blood pressures in response to exercise were associated with poorer blood vessel expansion in the arm following the cuff test, suggesting that the endothelial cells failed to dilate enough to handle the extra blood flow. There was no correlation between the stiffness of blood vessel walls or resting blood pressure with increased blood pressure during exercise.

Impaired endothelial function is not solely related to high blood pressure, Stewart adds. It also is associated with aging, menopause, high cholesterol, smoking and diabetes, and may be a common process for developing heart disease among all of these risk factors.

"It’s too early to recommend that people have exercise tests just to measure their blood pressures," Stewart says. "However, careful attention should be paid to exercise blood pressure if measured as part of a medical evaluation, or during a workout at a gym, since it may be a warning that your resting blood pressure may also increase."

The study was supported by the National Institutes of Health and the Johns Hopkins Bayview General Clinical Research Center. Study coauthors were Jidong Sung, Harry Silber, Jerome Fleg, Mark Kelemen, Katherine Turner, Anita Bacher, Devon Dobrosielski, James DeRegis, Edward Shapiro, and Pamela Ouyang.


Stewart, Kerry et al., "Exaggerated Exercise Blood Pressure is Related to Impaired Endothelial Vasodilator Function," American Journal of Hypertension, April 2004;17(4):314-320.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/cardiology/
http://www.cardiosource.com/library/journals/journal?sdid=4875

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>