Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Exercise Hypertension’ occurs when cells can’t ’relax,’ Hopkins researchers find

07.04.2004


So-called "exercise hypertension," an abnormally high spike in blood pressure experienced by generally healthy people during a workout, is a known risk factor for permanent and serious high blood pressure at rest. But who gets it, and why, has been largely unknown.



Now, Johns Hopkins scientists say they have reason to believe that the problem is rooted in the failure of cells that line the blood vessels to allow the arteries to expand to accommodate increased blood flow during exertion.

"Our study shows that this impaired ability of the endothelial cells, which control large blood vessel relaxation, is a potential cause of exercise hypertension," says Kerry J. Stewart, Ed.D., lead study author and director of clinical exercise physiology at Hopkins. "Because as many as 90 percent of adults are at risk for developing high blood pressure, knowing this may point to a cellular target for preventive therapies."


Normally during exercise, blood pressure increases to push the flow of oxygen-rich blood throughout the body. However, in some individuals, the response to exercise is exaggerated. Instead of reaching a systolic (upper number) blood pressure of around 200 mmHg at maximal exercise, they spike at 250 mmHg or higher.

For the study, published in the April issue of the American Journal of Hypertension, the investigators evaluated 38 men and 44 women ages 55 to 75 who had untreated mild hypertension but were otherwise healthy. Their blood pressures at rest ranged from 130 to 159 mmHg systolic (the upper number) and 85 to 99 mmHg diastolic (the lower number).

To measure endothelial function, the researchers first used ultrasound to measure the size of a large artery in the arm. Next they put a tight blood pressure cuff on one of the subjects’ arms for five minutes to stop blood flow to the arm, then deflated the cuff, causing a surge of blood flow. They then repeated the artery size measurement, comparing it to the resting measure of the artery. The ability of the blood vessels to expand under these conditions is an indicator of endothelial function.

In a second test, they examined blood vessel stiffness -- a marker of early heart disease -- by using ultrasound to measure how fast blood traveled from arteries in the subjects’ necks to their legs with each heart beat. Because stiff blood vessels do not absorb any of the pressure behind the blood flow, the faster the blood travels, the more stiff the vessel is. They compared these readings with blood pressure measures taken at rest and while the participants walked to maximal effort on a treadmill.

In their analysis, researchers found that higher blood pressures in response to exercise were associated with poorer blood vessel expansion in the arm following the cuff test, suggesting that the endothelial cells failed to dilate enough to handle the extra blood flow. There was no correlation between the stiffness of blood vessel walls or resting blood pressure with increased blood pressure during exercise.

Impaired endothelial function is not solely related to high blood pressure, Stewart adds. It also is associated with aging, menopause, high cholesterol, smoking and diabetes, and may be a common process for developing heart disease among all of these risk factors.

"It’s too early to recommend that people have exercise tests just to measure their blood pressures," Stewart says. "However, careful attention should be paid to exercise blood pressure if measured as part of a medical evaluation, or during a workout at a gym, since it may be a warning that your resting blood pressure may also increase."

The study was supported by the National Institutes of Health and the Johns Hopkins Bayview General Clinical Research Center. Study coauthors were Jidong Sung, Harry Silber, Jerome Fleg, Mark Kelemen, Katherine Turner, Anita Bacher, Devon Dobrosielski, James DeRegis, Edward Shapiro, and Pamela Ouyang.


Stewart, Kerry et al., "Exaggerated Exercise Blood Pressure is Related to Impaired Endothelial Vasodilator Function," American Journal of Hypertension, April 2004;17(4):314-320.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/cardiology/
http://www.cardiosource.com/library/journals/journal?sdid=4875

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>