Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Exercise Hypertension’ occurs when cells can’t ’relax,’ Hopkins researchers find

07.04.2004


So-called "exercise hypertension," an abnormally high spike in blood pressure experienced by generally healthy people during a workout, is a known risk factor for permanent and serious high blood pressure at rest. But who gets it, and why, has been largely unknown.



Now, Johns Hopkins scientists say they have reason to believe that the problem is rooted in the failure of cells that line the blood vessels to allow the arteries to expand to accommodate increased blood flow during exertion.

"Our study shows that this impaired ability of the endothelial cells, which control large blood vessel relaxation, is a potential cause of exercise hypertension," says Kerry J. Stewart, Ed.D., lead study author and director of clinical exercise physiology at Hopkins. "Because as many as 90 percent of adults are at risk for developing high blood pressure, knowing this may point to a cellular target for preventive therapies."


Normally during exercise, blood pressure increases to push the flow of oxygen-rich blood throughout the body. However, in some individuals, the response to exercise is exaggerated. Instead of reaching a systolic (upper number) blood pressure of around 200 mmHg at maximal exercise, they spike at 250 mmHg or higher.

For the study, published in the April issue of the American Journal of Hypertension, the investigators evaluated 38 men and 44 women ages 55 to 75 who had untreated mild hypertension but were otherwise healthy. Their blood pressures at rest ranged from 130 to 159 mmHg systolic (the upper number) and 85 to 99 mmHg diastolic (the lower number).

To measure endothelial function, the researchers first used ultrasound to measure the size of a large artery in the arm. Next they put a tight blood pressure cuff on one of the subjects’ arms for five minutes to stop blood flow to the arm, then deflated the cuff, causing a surge of blood flow. They then repeated the artery size measurement, comparing it to the resting measure of the artery. The ability of the blood vessels to expand under these conditions is an indicator of endothelial function.

In a second test, they examined blood vessel stiffness -- a marker of early heart disease -- by using ultrasound to measure how fast blood traveled from arteries in the subjects’ necks to their legs with each heart beat. Because stiff blood vessels do not absorb any of the pressure behind the blood flow, the faster the blood travels, the more stiff the vessel is. They compared these readings with blood pressure measures taken at rest and while the participants walked to maximal effort on a treadmill.

In their analysis, researchers found that higher blood pressures in response to exercise were associated with poorer blood vessel expansion in the arm following the cuff test, suggesting that the endothelial cells failed to dilate enough to handle the extra blood flow. There was no correlation between the stiffness of blood vessel walls or resting blood pressure with increased blood pressure during exercise.

Impaired endothelial function is not solely related to high blood pressure, Stewart adds. It also is associated with aging, menopause, high cholesterol, smoking and diabetes, and may be a common process for developing heart disease among all of these risk factors.

"It’s too early to recommend that people have exercise tests just to measure their blood pressures," Stewart says. "However, careful attention should be paid to exercise blood pressure if measured as part of a medical evaluation, or during a workout at a gym, since it may be a warning that your resting blood pressure may also increase."

The study was supported by the National Institutes of Health and the Johns Hopkins Bayview General Clinical Research Center. Study coauthors were Jidong Sung, Harry Silber, Jerome Fleg, Mark Kelemen, Katherine Turner, Anita Bacher, Devon Dobrosielski, James DeRegis, Edward Shapiro, and Pamela Ouyang.


Stewart, Kerry et al., "Exaggerated Exercise Blood Pressure is Related to Impaired Endothelial Vasodilator Function," American Journal of Hypertension, April 2004;17(4):314-320.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/cardiology/
http://www.cardiosource.com/library/journals/journal?sdid=4875

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>