Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Exercise Hypertension’ occurs when cells can’t ’relax,’ Hopkins researchers find

07.04.2004


So-called "exercise hypertension," an abnormally high spike in blood pressure experienced by generally healthy people during a workout, is a known risk factor for permanent and serious high blood pressure at rest. But who gets it, and why, has been largely unknown.



Now, Johns Hopkins scientists say they have reason to believe that the problem is rooted in the failure of cells that line the blood vessels to allow the arteries to expand to accommodate increased blood flow during exertion.

"Our study shows that this impaired ability of the endothelial cells, which control large blood vessel relaxation, is a potential cause of exercise hypertension," says Kerry J. Stewart, Ed.D., lead study author and director of clinical exercise physiology at Hopkins. "Because as many as 90 percent of adults are at risk for developing high blood pressure, knowing this may point to a cellular target for preventive therapies."


Normally during exercise, blood pressure increases to push the flow of oxygen-rich blood throughout the body. However, in some individuals, the response to exercise is exaggerated. Instead of reaching a systolic (upper number) blood pressure of around 200 mmHg at maximal exercise, they spike at 250 mmHg or higher.

For the study, published in the April issue of the American Journal of Hypertension, the investigators evaluated 38 men and 44 women ages 55 to 75 who had untreated mild hypertension but were otherwise healthy. Their blood pressures at rest ranged from 130 to 159 mmHg systolic (the upper number) and 85 to 99 mmHg diastolic (the lower number).

To measure endothelial function, the researchers first used ultrasound to measure the size of a large artery in the arm. Next they put a tight blood pressure cuff on one of the subjects’ arms for five minutes to stop blood flow to the arm, then deflated the cuff, causing a surge of blood flow. They then repeated the artery size measurement, comparing it to the resting measure of the artery. The ability of the blood vessels to expand under these conditions is an indicator of endothelial function.

In a second test, they examined blood vessel stiffness -- a marker of early heart disease -- by using ultrasound to measure how fast blood traveled from arteries in the subjects’ necks to their legs with each heart beat. Because stiff blood vessels do not absorb any of the pressure behind the blood flow, the faster the blood travels, the more stiff the vessel is. They compared these readings with blood pressure measures taken at rest and while the participants walked to maximal effort on a treadmill.

In their analysis, researchers found that higher blood pressures in response to exercise were associated with poorer blood vessel expansion in the arm following the cuff test, suggesting that the endothelial cells failed to dilate enough to handle the extra blood flow. There was no correlation between the stiffness of blood vessel walls or resting blood pressure with increased blood pressure during exercise.

Impaired endothelial function is not solely related to high blood pressure, Stewart adds. It also is associated with aging, menopause, high cholesterol, smoking and diabetes, and may be a common process for developing heart disease among all of these risk factors.

"It’s too early to recommend that people have exercise tests just to measure their blood pressures," Stewart says. "However, careful attention should be paid to exercise blood pressure if measured as part of a medical evaluation, or during a workout at a gym, since it may be a warning that your resting blood pressure may also increase."

The study was supported by the National Institutes of Health and the Johns Hopkins Bayview General Clinical Research Center. Study coauthors were Jidong Sung, Harry Silber, Jerome Fleg, Mark Kelemen, Katherine Turner, Anita Bacher, Devon Dobrosielski, James DeRegis, Edward Shapiro, and Pamela Ouyang.


Stewart, Kerry et al., "Exaggerated Exercise Blood Pressure is Related to Impaired Endothelial Vasodilator Function," American Journal of Hypertension, April 2004;17(4):314-320.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/cardiology/
http://www.cardiosource.com/library/journals/journal?sdid=4875

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>