Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U Iowa study identifies damaging mechanism in transplants and heart attacks

02.03.2004


A University of Iowa study suggests that inhibiting a certain protein involved in inflammation might be of therapeutic benefit in organ transplantation, heart attacks and possibly stroke. The study, led by John Engelhardt, Ph.D., UI professor and interim head of anatomy and cell biology, found that blocking the action of this protein can prevent the tissue damage caused by ischemia/reperfusion injury. The study is published in the March 1 issue of the Journal of Clinical Investigation.


John F. Engelhardt, Ph.D.



Ischemia/reperfusion injury is a common, damaging component of organ transplantation, heart attack, and stroke and is a determinant of organ failure in all cases. In this type of injury, the organ is initially deprived of oxygen-carrying blood (ischemia). During reperfusion (the re-establishment of blood supply), toxins are briefly generated from the oxygen that lead to tissue damage and trigger a potentially detrimental inflammatory response.

Although inflammation is an important bodily response to environmental injuries including bacterial and viral infection as well as ischemia/reperfusion injury, too much inflammation can damage healthy tissue and cause problems.


"In this study we looked at a well-known ’master switch’ type of protein called NF-kB that controls the expression of genes that regulate inflammatory responses," said Engelhardt, who also is professor of internal medicine in the UI Roy J. and Lucille A. Carver College of Medicine and director of the UI Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases.

Engelhardt and his colleagues, including graduate student and lead author of the study, Chenguang Fan, compared the activation of NF-kB in response to bacterial infection and ischemia/ reperfusion injury. Historically, these two types of injury were thought to produce inflammation via the same cellular pathway. However, the UI researchers found that there are two distinct pathways for the two different types of injury.

"Important health implications have emerged from these studies, which may aid us in treating environmental injuries that have both ischemic and inflammatory components. We can now selectively remove, like a molecular surgeon, activation of one or both of these pathways using gene therapy approaches," Engelhardt said. "We found that selective inhibition of the pathway triggered by ischemia/reperfusion injury was better for the organ and better for the animal."

Activation of NF-kB is tightly controlled by so-called inhibitory proteins. Two of these inhibitory proteins, IkB alpha and IkB beta, keep NF-kB in an inactive state. However, injury leads to modification of the inhibitory proteins, causing them to release NF-kB. The activated master switch protein can then regulate expression of genes that mount a response to the injury.

The UI team used gene manipulation to replace IkB alpha with IkB beta in mice. Mice with only IkB beta protein respond to bacterial infection in the same way that normal mice do. However, these mice sustain less liver damage and were more likely to survive ischemic/reperfusion injury to that organ than mice with both inhibitory proteins.

The study found that the two inhibitory proteins function similarly in response to bacterial infection, but have different abilities to activate NF-kB after ischemia/reperfusion injury. Furthermore, the results suggest that inhibiting the IkB alpha pathway could prevent ischemic/reperfusion injury to transplanted organs and therefore improve the success of this procedure.

Similarly, Engelhardt speculated that blocking this pathway in patients at risk of a heart attack - a patient undergoing angioplasty, for example – potentially could benefit those patients in the event of a heart attack.

In addition to the animal experiments, the UI team also used gene therapy to manipulate the activation of NF-kB. These experiments helped reveal the different molecular pathways that activate NF-kB as a result of different types of injury.

"Gene therapy was a tool we used to address the mechanism of the disease process. But once you understand the process, those gene therapy tools become potential therapeutic tools," Engelhardt added. "This research has led to a better understanding of the disease process that occurs following ischemic/ reperfusion injury and a better understanding will allow us to potentially prevent or treat ischemic organ injury disorders."

In addition to Engelhardt and Fan, the research team also included Qiang Li, Yulong Zhang, Xiaoming Liu, D.V.M., Ph.D., Meihui Luo, Duane Abbott and Weihong Zhou, M.D. The research was supported by grants from the National Institutes of Health.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.


STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

CONTACT(S): Jennifer Brown, 319-335-9917, jennifer-l-brown@uiowa.edu

PHOTOS/GRAPHICS: A photo of Dr. Engelhardt is available at http://www.anatomy.uiowa.edu/pages/directory/faculty/engelhardt.html

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu/
http://www.anatomy.uiowa.edu/pages/directory/faculty/engelhardt.html

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>