Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mix of Chemicals Plus Stress Damages Brain, Liver in Animals and Likely in Humans

27.02.2004


Mohamed B. Abou-Donia, Ph.D., Professor, Pharmacology and Cancer Biology; Professor, Neurobiology
CREDIT: Duke University Medical Center


Stress is a well known culprit in disease, but now researchers have shown that stress can intensify the effects of relatively safe chemicals, making them very harmful to the brain and liver in animals and likely in humans, as well.

Even short-term exposure to specific chemicals -- just 28 days -- when combined with stress was enough to cause widespread cellular damage in the brain and liver of rats, said Mohamed Abou Donia, Ph.D., a Duke pharmacologist and senior author of the study.

Results of the study were published in the Feb. 27, 2004, issue of the Journal of Toxicology and Environmental Health.



Abou Donia’s study was designed to reproduce the symptoms of Gulf War Syndrome, a disorder marked by chronic fatigue, muscle and joint pain, tremors, headaches, difficulties concentrating and learning, loss of memory, irritability and reproductive problems. The Gulf War Syndrome symptoms have been difficult to explain because veterans outwardly appear healthy and normal, said Abou Donia. Likewise, the chemically exposed animals in Abou Donia’s studies looked and behaved normally.

But a decade of neurologic research has revealed widespread damage to the brain, nervous system, liver and testes of rats exposed to 60 days of low-dose chemicals -- the insect repellant DEET, the insecticide permethrin, and the anti-nerve gas agent pyridostigmine bromide. These are the same drugs that the soldiers received during the 1990 - 1991 Persian Gulf War, and Abou Donia’s rats were exposed to the same levels -- in weight adjusted doses -- as the soldiers were reportedly given.

Now, Abou Donia has demonstrated that the combination of stress and short-term exposure to chemicals (28 days) can promote cellular death in specific brain regions and injury to the liver. Moreover, the chemical trio combined with stress caused damage to portions of the brain where its protective blood-brain barrier was still intact.

The latter finding suggests that the chemicals permeated the protective barrier in one region, then leaked into other regions of the brain where the barrier remained intact. The ability of chemicals to leak from one area of the brain to another holds the potential for much greater damage to occur to the entire brain.

Brain regions that sustained significant damage in this study were the cerebral cortex (motor and sensory function), the hippocampus (learning and memory) and the cerebellum (gait and coordination of movements). Abou Donia’s earlier studies demonstrated severe damage to the cingulate cortex, dentate gyrus, thalamus and hypothalamus.(The thalamus is the major relay for visual and auditory information going to the cortex and is also responsible for subjective feelings. The hypothalamus regulates metabolism, sleep and sexual activity, as well as control of emotions.)

Abou Donia’s team found a significant number of dead or dying brain cells in all of these brain regions, as well as major alterations to brain chemicals that are necessary for learning and memory, muscle strength and body movement. Stress alone caused little or no brain injury in the rats, nor did the three chemicals given together in low doses for 28 days.

"But when we put the animals under moderate stress by simply restricting their movement in a plastic holder for five minutes at a time every day, the animals experienced enough stress that it intensified the effects of the chemicals dramatically," said Abou Donia.

Soldiers in the Gulf War were likely under stress 24 hours a day for weeks or months at a time, a scenario which could explain the origins of their diverse physical and cognitive complaints, said Abou Donia.

"The brain deficits we found in rats reside in specific areas of the brain that we can’t measure in living humans," said Abou Donia. "This is why the deficits are so difficult to assess clinically and why animal studies are so critical to understanding the cellular damage."

In addition to brain injuries, the Duke study found unexpected damage to the liver, including swollen cells, congested blood vessels and abnormal fatty deposits that diminish the liver cells’ function. Liver cells also showed reduced activity of an important enzyme -- BuCHE -- that helps rid the body of some toxic substances. Neither stress by itself nor chemicals alone had any impact on BuCHE levels, but the combination did.

Such damage to the liver can reduce its ability to rid the body of toxic substances -- its primary function as a vital organ. And, the less effectively the liver filters out toxic substances, the more the chemicals can concentrate in the brain and nervous system, he added.

Finally, the study showed that stress plus chemicals increased the amount of destructive molecules in the brain called reactive oxygen species -- also known as oxygen free radicals. Reactive oxygen species are produced by the body as it metabolizes various substances in the presence of oxygen.

Reactive oxygen species attack DNA, RNA and proteins, causing cellular and membrane damage. Normally, the body removes these chemicals from the body and the brain. But excessive production of reactive oxygen species can overwhelm the body’s ability to dispose of them.

"In our study, there was an increase in reactive oxygen species. We think that either the three chemicals and stress directly produce these free radicals, or the chemicals impede the body’s ability to get rid of them," said Abou Donia.

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7433

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>