Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein helps immune system mount ’instant strike’ against deadly flu viruses

19.02.2004


Discovery suggests that a ’live virus’ vaccine may offer best defense against avian flu

Researchers at the University of Rochester have identified a protein in the immune system that appears to play a crucial role in protecting against deadly forms of influenza, and may be particularly important in protecting against emerging flu viruses like the avian flu. The researchers believe that a vaccine made with a live but weakened strain of flu virus – such as the inhaled flu vaccine introduced last year – may activate this part of the immune system and offer the best defense against avian flu.

In a paper being published in the February 20 issue of Immunity, the researchers report that a protein called VLA-1 enables the immune system to develop "peripheral immunity" by anchoring millions of virus-killing cells to tissues along the airways and lungs, where flu enters the body. The protein holds the cells in place and helps them survive there for long periods – sometimes years – where they stand ready to mount an immediate attack on the flu virus.



In a series of experiments, mice whose T cells were able to make the protein were able to develop peripheral immunity, and 90 percent of them survived after being infected with a potentially deadly strain of flu. Mice with T-cells engineered to lack the protein failed to develop peripheral immunity, and only 60 percent of them survived after being infected with the same flu virus.

The findings demonstrate that when confronted by a potentially deadly flu strain, an effective first strike by T cells in the lungs can mean the difference between life and death. To immunologist David Topham, Ph.D., assistant professor of Microbiology and Immunology at the University of Rochester and lead author of the study, the findings reveal something else: a shortcoming in the world’s most widely administered flu vaccines. Those vaccines, made with fragments of "killed" viruses, help the immune system make antibodies against the flu virus but do not induce peripheral immunity.

The trouble with antibodies, says Topham, arises when a flu virus changes, either by mutating or by swapping genes with another virus – a scenario that experts fear would lead to a pandemic of avian flu. When a virus changes, antibodies often have difficulty recognizing the new virus and mobilizing the immune system to attack. And even if they do, it takes two to three days for antibodies to stimulate the production of T cells, and for those cells to begin attacking the virus. Unlike antibodies, T cells are much more effective at recognizing viruses that have changed, and they can attack instantly.

"In a lethal form of flu, like avian flu has the potential to be, you may not have three days. A lethal infection can gain such a foothold in that time that it can become very difficult or impossible for the immune system to overcome it," said Topham.

Topham believes that to protect people against an outbreak of avian flu, vaccine developers should switch to a vaccine made with a live but weakened flu virus. Such vaccines are thought to more closely mimic a natural encounter with the flu virus and are more likely to induce peripheral immunity, which might deliver an instant strike against the virus as the infection begins.

"When confronted by a deadly flu virus, the ability to attack it instantly, as soon as the virus hits the lungs, might mean the difference between life and death," said Topham. "Our goal should be to design a vaccine that helps the immune system produce peripheral immunity. A vaccine made from live virus offers the best chance of accomplishing this."


The research was funded by the National Institutes of Health, and conducted at the David H. Smith Center for Vaccine Biology, part of the Aab Institute of Biomedical Sciences at the University of Rochester Medical Center.

Chris DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>