Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integrated animal model answers questions about environment

30.01.2004


Birds were dying on an island off the coast of Florida, and people didn’t know why. A group of conservationists wondered if the culprit might be a pesticide sprayed into the air to wipe out mosquitoes. The explanation quickly came from an unlikely source in Wisconsin.



For several years, Warren Porter, a professor of zoology at the University of Wisconsin-Madison, has been working with faculty and staff across campus to develop a computer model that could predict how animals, living on a real landscape anywhere on Earth, would respond to specific changes in the environment. The model could answer questions, such as how warmer temperatures would alter the activity patterns of squirrels in southern California or how removing the forest canopy in Yellowstone National Park would affect the elk that took cover under it during winter.

"If we fail to answer questions like these, we will continue to lose species - and their genomes, the biological libraries that have accumulated information for billions of years - from this planet," says Porter.


But many of the models that had been designed to address ecological concerns, he adds, were inadequate: They didn’t take into account the complexity of factors involved in the interaction between animals and their environment. To achieve a more sufficient model, Porter needed to integrate animal morphology, physiology and behavior with features of the climate, topography and vegetation of a particular area.

"Models are always an approximation to reality," he explains. "You design them to ask specific questions. As the questions become more complex, the models become more complex. As computers have gained more power, we have been able to continue to add complexity and to solve very difficult problems."

At the heart of Porter’s integrated model is an understanding of energy transfer between animals and their surroundings. For instance, the animal’s physical properties - body size, fur thickness, body temperature and breathing rate - help determine how much energy it needs to survive. The animal’s behavioral patterns, such as how often it reproduces or how active it is, also are important factors.

To apply this information in a real context, scientists must also determine how much energy is available based on environmental factors, including rainfall, temperature, vegetation, topography, sun exposure and time of day or year. The model, which incorporates remote satellite sensing and large-scale global climate models, can determine this.

Because Porter’s model integrates all this information on animal physiology and behavior and climate conditions in a predictive model, the scientist says, "it can help us understand what the critical processes are that affect life processes on earth and how specific changes in environmental conditions may modify or even terminate those life processes."

The model, he adds, also could help scientists solve unanswered questions about what’s already happened. For example, the model could answer how the distribution of mosquitoes that potentially carry diseases harmful to humans and other species might change when the ground is wetter than usual, or how much more water livestock will need when the outside temperature is two degrees warmer.

With its specificity and complexity, the model could determine parameters crucial for determining a species’ potential for growth and reproduction, exposure to pesticides or pathogens, migration times and patterns, and possible sites ideal for conservation, says Porter. Based on the model, Porter says scientists could make recommendations on the most effective habitats for free-ranging animals, which could maximize productivity while minimizing environmental stresses.

Patented by the Wisconsin Alumni Research Foundation, Porter’s system for examining the effects of environment on animals already is answering important questions. For instance, Porter and his colleagues have used it to understand key factors that led early hominids to walk upright, instead of on all fours.

It also has helped the conservationists who contacted the Wisconsin zoologist about three years ago, shortly after the large number of birds started dying off the coast of Florida. Porter was able to use the integrated model to determine how much air the birds would have been breathing. Getting enough oxygen is critical for metabolic processes, which supply energy to the body.

Given the known levels of pesticides in the air before the birds died, Porter calculated daily pesticide inhalation. It was toxic over a short period of time, he says. The Wisconsin scientist forwarded this information to the American Bird Conservancy. A week later, he says, they presented his findings at an Environmental Protective Agency meeting in Florida.

"The next day," Porter recalls, "the EPA announced that they were moving to ban spraying of that pesticide on the island."

Porter notes that the integrated model, and the results it already has produced, would not have been possible without the unique, interdisciplinary nature of the UW-Madison campus. In the course of his career as a professor at the university, Porter has taken 33 courses in 14 academic departments - an activity, he says, that has enabled him to gain the expertise and collaborations needed to develop such a complex model.

Warren Porter | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>