Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integrated animal model answers questions about environment

30.01.2004


Birds were dying on an island off the coast of Florida, and people didn’t know why. A group of conservationists wondered if the culprit might be a pesticide sprayed into the air to wipe out mosquitoes. The explanation quickly came from an unlikely source in Wisconsin.



For several years, Warren Porter, a professor of zoology at the University of Wisconsin-Madison, has been working with faculty and staff across campus to develop a computer model that could predict how animals, living on a real landscape anywhere on Earth, would respond to specific changes in the environment. The model could answer questions, such as how warmer temperatures would alter the activity patterns of squirrels in southern California or how removing the forest canopy in Yellowstone National Park would affect the elk that took cover under it during winter.

"If we fail to answer questions like these, we will continue to lose species - and their genomes, the biological libraries that have accumulated information for billions of years - from this planet," says Porter.


But many of the models that had been designed to address ecological concerns, he adds, were inadequate: They didn’t take into account the complexity of factors involved in the interaction between animals and their environment. To achieve a more sufficient model, Porter needed to integrate animal morphology, physiology and behavior with features of the climate, topography and vegetation of a particular area.

"Models are always an approximation to reality," he explains. "You design them to ask specific questions. As the questions become more complex, the models become more complex. As computers have gained more power, we have been able to continue to add complexity and to solve very difficult problems."

At the heart of Porter’s integrated model is an understanding of energy transfer between animals and their surroundings. For instance, the animal’s physical properties - body size, fur thickness, body temperature and breathing rate - help determine how much energy it needs to survive. The animal’s behavioral patterns, such as how often it reproduces or how active it is, also are important factors.

To apply this information in a real context, scientists must also determine how much energy is available based on environmental factors, including rainfall, temperature, vegetation, topography, sun exposure and time of day or year. The model, which incorporates remote satellite sensing and large-scale global climate models, can determine this.

Because Porter’s model integrates all this information on animal physiology and behavior and climate conditions in a predictive model, the scientist says, "it can help us understand what the critical processes are that affect life processes on earth and how specific changes in environmental conditions may modify or even terminate those life processes."

The model, he adds, also could help scientists solve unanswered questions about what’s already happened. For example, the model could answer how the distribution of mosquitoes that potentially carry diseases harmful to humans and other species might change when the ground is wetter than usual, or how much more water livestock will need when the outside temperature is two degrees warmer.

With its specificity and complexity, the model could determine parameters crucial for determining a species’ potential for growth and reproduction, exposure to pesticides or pathogens, migration times and patterns, and possible sites ideal for conservation, says Porter. Based on the model, Porter says scientists could make recommendations on the most effective habitats for free-ranging animals, which could maximize productivity while minimizing environmental stresses.

Patented by the Wisconsin Alumni Research Foundation, Porter’s system for examining the effects of environment on animals already is answering important questions. For instance, Porter and his colleagues have used it to understand key factors that led early hominids to walk upright, instead of on all fours.

It also has helped the conservationists who contacted the Wisconsin zoologist about three years ago, shortly after the large number of birds started dying off the coast of Florida. Porter was able to use the integrated model to determine how much air the birds would have been breathing. Getting enough oxygen is critical for metabolic processes, which supply energy to the body.

Given the known levels of pesticides in the air before the birds died, Porter calculated daily pesticide inhalation. It was toxic over a short period of time, he says. The Wisconsin scientist forwarded this information to the American Bird Conservancy. A week later, he says, they presented his findings at an Environmental Protective Agency meeting in Florida.

"The next day," Porter recalls, "the EPA announced that they were moving to ban spraying of that pesticide on the island."

Porter notes that the integrated model, and the results it already has produced, would not have been possible without the unique, interdisciplinary nature of the UW-Madison campus. In the course of his career as a professor at the university, Porter has taken 33 courses in 14 academic departments - an activity, he says, that has enabled him to gain the expertise and collaborations needed to develop such a complex model.

Warren Porter | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>