Ultrasound-guided liposomes boost imaging, target drug/gene therapy

One of the newest tools in the diagnosis and treatment of cardiovascular disease and stroke combines a 40-year-old imaging technique and liposomes, little globules of soluble fats and water that circulate naturally throughout the bloodstream.

The technique, developed by Northwestern University researcher David D. McPherson, M.D., and colleagues with a $2.3 million grant from the National Institutes of Health, uses ultrasound energy to create microbubbles inside specially treated liposomes and then direct the liposomes to specific targets, such as atherosclerotic plaques or blood clots, in the coronary arteries and other arteries in the body, including those to the brain.

Once they reach their target in the arteries, the echogenic liposomes, or ELIPs, produce an acoustic shadow that improves ultrasound’s ability to visualize and diagnose the extent of plaques or clots within the arteries.

Further, the ELIPs can be treated to also encapsulate certain drugs, such as antibiotics or thrombolytic (clot-busting) drugs or gene therapy, which, with the help of ultrasonic pulses, can be released at the site of a plaque or a clot or into living cells. This is caused by cavitation, the ability of the ultrasound to increase the energy of the microbubble, which then opens the cell membrane and allows drugs to enter.

McPherson, who is Lester B. and Frances T. Knight Professor of Cardiology and professor of medicine at the Feinberg School of Medicine at Northwestern University, believes that the ultrasound technique may further understanding of how atherosclerotic plaques develop and grow, as well as enhance more than tenfold scientists’ ability to target drug or gene therapy toward specific atherosclerotic components or affected tissue without damaging cells.

“The science of ultrasound, in addition to its imaging capability, also lies in its biologic effects. By harnessing the physical effects of ultrasound, we can physiologically evaluate and therapeutically affect vascular and biologic tissue,” said McPherson, who is conducting the ultrasound/liposome research with scientists from Northwestern and the University of Cincinnati.

“While our research is in the early stages, we believe that our combined technology will have far-reaching implications in humans, allowing for more directed atherosclerotic and thrombolytic therapy,” McPherson said.

Ultrasonography is a 40-year-old noninvasive, two-dimensional imaging technique used to examine and measure internal body structures and to detect body abnormalities. In cardiology, ultrasound is used to see inside the heart to identify abnormal structures or functions, for example, to measure blood flow through heart and in major blood vessels.

Liposomes are used in the cosmetic industry to transport small molecules into cells. The liposome wall is similar in composition to the material of cell membranes. This enables liposomes to merge readily with cellular membranes and release molecules into cells.

Collaborating with McPherson on the ultrasound/liposome research are Christy Holland, University of Cincinnati; and Shao-Ling Huang, Bonnie J. Kane, Robert C. McDonald, Ashwin Nagaraj, Sanford I. Roth and Susan D. Tiukinhoy, Northwestern University.

Media Contact

Elizabeth Crown EurekAlert!

More Information:

http://www.nwu.edu/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors