Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wound-healing genes influence cancer progression, say Stanford researchers

13.01.2004


Genes that help wounds heal are most often the "good guys," but a new study paints them as the enemy in some types of cancer. Researchers at the Stanford University School of Medicine have found that some tumors activate these wound-healing genes and, when they do, the tumors are more likely to spread. This work could help highlight new ways to treat the disease along with helping doctors decide which cancers to approach more aggressively.



"This is a feature we can find early on in the disease and it could change the way cancer is treated," said Howard Chang, MD, PhD, a postdoctoral scholar and lead author of the paper. The work appears in the Jan. 19 edition of Public Library of Science Biology.

The research group, led by Patrick Brown, MD, PhD, professor of biochemistry, took an unusual approach in finding the telltale genes. In most studies, scientists analyze tumor samples and look for genes that are more active compared to normal tissue. Such studies have produced long lists of genes involved in cancer biology but don’t provide clues about what role those genes may be playing.


Chang started from the opposite direction. He knew wound healing and cancer progression had some similarities, including the growth of new blood vessels, rearrangement of the molecular matrix around the cells and changes in how cells attach to each other. "Wound healing is a process that allows cells to break normal constraints on their growth and cross boundaries. If a cell can access that program, that’s a good environment for cancer," Chang said.

The researchers started by finding which genes are active in cells exposed to clotted blood as a model of cells in the wound-healing process. Then Chang and his colleagues looked to see whether those same genes were active in tumor samples.

The researchers found that prostate and liver cancers always activated wound-healing genes, while tumors in the breast, colon and prostate were mixed. In these variable tissues, tumors with active wound-healing genes turned out to be highly aggressive and were more likely to spread to other tissues.

Chang said assessing wound-healing genes could help doctors choose the best treatment for a patient. "There are a lot of drugs that work only on certain type of cancers. If you realize that different drugs work on a specific abnormality, doctors can match the drug to the problem," he said.

The best-known example of such pharmaceutical matchmaking is the drug Herceptin, which specifically treats breast cancers with an active version of the gene Her2/Neu.

Most doctors don’t have the ability to screen tumor samples for active genes, but they routinely test for the presence of proteins made by genes, as with Her2/Neu. Julie Sneddon, a biochemistry graduate student and second author on the paper, has been working on a similar test to identify tumors that churn out wound-healing proteins.

Chang said the next step is learning how best to treat tumors that produce these proteins. Because wound healing is a well-understood process, researchers may be able to disrupt the process and slow the cancer’s spread. "There are drugs coming out that block blood vessel growth, so perhaps those drugs should be targeted to this population of patients," Chang said.

Additional Stanford researchers who contributed to this work include postdoctoral scholars Ruchira Sood, PhD, and Jen-Tsan Chi, MD, PhD; Ash Alizadeh, MD, PhD, a former graduate student; Rob West, MD, PhD, clinical instructor of pathology; Kelli Montgomery, research associate; and Matt van de Rijn, MD, PhD, associate professor of pathology.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Broadcast media contact: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>