Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wound-healing genes influence cancer progression, say Stanford researchers

13.01.2004


Genes that help wounds heal are most often the "good guys," but a new study paints them as the enemy in some types of cancer. Researchers at the Stanford University School of Medicine have found that some tumors activate these wound-healing genes and, when they do, the tumors are more likely to spread. This work could help highlight new ways to treat the disease along with helping doctors decide which cancers to approach more aggressively.



"This is a feature we can find early on in the disease and it could change the way cancer is treated," said Howard Chang, MD, PhD, a postdoctoral scholar and lead author of the paper. The work appears in the Jan. 19 edition of Public Library of Science Biology.

The research group, led by Patrick Brown, MD, PhD, professor of biochemistry, took an unusual approach in finding the telltale genes. In most studies, scientists analyze tumor samples and look for genes that are more active compared to normal tissue. Such studies have produced long lists of genes involved in cancer biology but don’t provide clues about what role those genes may be playing.


Chang started from the opposite direction. He knew wound healing and cancer progression had some similarities, including the growth of new blood vessels, rearrangement of the molecular matrix around the cells and changes in how cells attach to each other. "Wound healing is a process that allows cells to break normal constraints on their growth and cross boundaries. If a cell can access that program, that’s a good environment for cancer," Chang said.

The researchers started by finding which genes are active in cells exposed to clotted blood as a model of cells in the wound-healing process. Then Chang and his colleagues looked to see whether those same genes were active in tumor samples.

The researchers found that prostate and liver cancers always activated wound-healing genes, while tumors in the breast, colon and prostate were mixed. In these variable tissues, tumors with active wound-healing genes turned out to be highly aggressive and were more likely to spread to other tissues.

Chang said assessing wound-healing genes could help doctors choose the best treatment for a patient. "There are a lot of drugs that work only on certain type of cancers. If you realize that different drugs work on a specific abnormality, doctors can match the drug to the problem," he said.

The best-known example of such pharmaceutical matchmaking is the drug Herceptin, which specifically treats breast cancers with an active version of the gene Her2/Neu.

Most doctors don’t have the ability to screen tumor samples for active genes, but they routinely test for the presence of proteins made by genes, as with Her2/Neu. Julie Sneddon, a biochemistry graduate student and second author on the paper, has been working on a similar test to identify tumors that churn out wound-healing proteins.

Chang said the next step is learning how best to treat tumors that produce these proteins. Because wound healing is a well-understood process, researchers may be able to disrupt the process and slow the cancer’s spread. "There are drugs coming out that block blood vessel growth, so perhaps those drugs should be targeted to this population of patients," Chang said.

Additional Stanford researchers who contributed to this work include postdoctoral scholars Ruchira Sood, PhD, and Jen-Tsan Chi, MD, PhD; Ash Alizadeh, MD, PhD, a former graduate student; Rob West, MD, PhD, clinical instructor of pathology; Kelli Montgomery, research associate; and Matt van de Rijn, MD, PhD, associate professor of pathology.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Broadcast media contact: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>