Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wound-healing genes influence cancer progression, say Stanford researchers

13.01.2004


Genes that help wounds heal are most often the "good guys," but a new study paints them as the enemy in some types of cancer. Researchers at the Stanford University School of Medicine have found that some tumors activate these wound-healing genes and, when they do, the tumors are more likely to spread. This work could help highlight new ways to treat the disease along with helping doctors decide which cancers to approach more aggressively.



"This is a feature we can find early on in the disease and it could change the way cancer is treated," said Howard Chang, MD, PhD, a postdoctoral scholar and lead author of the paper. The work appears in the Jan. 19 edition of Public Library of Science Biology.

The research group, led by Patrick Brown, MD, PhD, professor of biochemistry, took an unusual approach in finding the telltale genes. In most studies, scientists analyze tumor samples and look for genes that are more active compared to normal tissue. Such studies have produced long lists of genes involved in cancer biology but don’t provide clues about what role those genes may be playing.


Chang started from the opposite direction. He knew wound healing and cancer progression had some similarities, including the growth of new blood vessels, rearrangement of the molecular matrix around the cells and changes in how cells attach to each other. "Wound healing is a process that allows cells to break normal constraints on their growth and cross boundaries. If a cell can access that program, that’s a good environment for cancer," Chang said.

The researchers started by finding which genes are active in cells exposed to clotted blood as a model of cells in the wound-healing process. Then Chang and his colleagues looked to see whether those same genes were active in tumor samples.

The researchers found that prostate and liver cancers always activated wound-healing genes, while tumors in the breast, colon and prostate were mixed. In these variable tissues, tumors with active wound-healing genes turned out to be highly aggressive and were more likely to spread to other tissues.

Chang said assessing wound-healing genes could help doctors choose the best treatment for a patient. "There are a lot of drugs that work only on certain type of cancers. If you realize that different drugs work on a specific abnormality, doctors can match the drug to the problem," he said.

The best-known example of such pharmaceutical matchmaking is the drug Herceptin, which specifically treats breast cancers with an active version of the gene Her2/Neu.

Most doctors don’t have the ability to screen tumor samples for active genes, but they routinely test for the presence of proteins made by genes, as with Her2/Neu. Julie Sneddon, a biochemistry graduate student and second author on the paper, has been working on a similar test to identify tumors that churn out wound-healing proteins.

Chang said the next step is learning how best to treat tumors that produce these proteins. Because wound healing is a well-understood process, researchers may be able to disrupt the process and slow the cancer’s spread. "There are drugs coming out that block blood vessel growth, so perhaps those drugs should be targeted to this population of patients," Chang said.

Additional Stanford researchers who contributed to this work include postdoctoral scholars Ruchira Sood, PhD, and Jen-Tsan Chi, MD, PhD; Ash Alizadeh, MD, PhD, a former graduate student; Rob West, MD, PhD, clinical instructor of pathology; Kelli Montgomery, research associate; and Matt van de Rijn, MD, PhD, associate professor of pathology.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Broadcast media contact: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>