Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The common cold as cancer fighter? SLU prof’s lifetime work moving into clinical trials

17.12.2003


Saint Louis University researchers receive a patent after decades of research.



Can the common cold ever be a good thing? It is if you’ve figured out a way to genetically engineer the virus so that it fights and kills cancerous cells - while leaving healthy cells intact.

That’s been the work of Dr. William Wold and his colleagues at Saint Louis University School of Medicine for the last 30 years.


"The potential is understandably huge," said Wold, whose work has just received a U.S. patent after years of study.

Dr. Wold, chair of the department of molecular microbiology and immunology, and his colleagues Karoly Toth, Konstantin Doronin, Ann E. Tollefson, and Mohan Kuppuswamy have found a way to convert the relatively benign "adenovirus" that causes the common cold into an anti-cancer drug that attacks and destroys cancerous cells.

"Human cancer is currently treated with surgery, radiation therapy, or chemotherapy, depending on the cancer type," Wold said. "These treatments can be highly successful, but new therapies are required, especially for tumors that have become resistant to chemo- or radiation-therapy."

Wold’s group has developed several new "adenovirus cancer gene therapy vectors," changing these genes so the virus will attack cancer cells.

"Some of our vectors are designed to destroy many different types of cancers, others are designed to be specific to colon or lung cancer. In preclinical testing these vectors were highly effective against cancerous tumors and did not harm normal tissues."

Wold and his colleagues have done this by modifying one gene so that the virus can grow in cancer cells but NOT normal cells and by boosting the activity of another gene that the virus normally uses to disrupt the cells it has infected. "When the virus infects cells, it takes the altered genes with it, and those genes attack cancer cells while leaving normal cells intact," Wold explained.

A U.S. patent (No. 6,627,190) was awarded this fall to Dr. Wold and his team of researchers. Pre-clinical testing is complete and is expected to move soon into clinical trials.

Now this patented technology has been issued and exclusively licensed to a company, Introgen Therapeutics, which made the announcement this morning. Introgen and VirRx, a biotechnology company founded by Wold and with a primary interest in cancer gene therapy, are collaborating on new therapies for cancer and other diseases.

"Our collaboration with Introgen has resulted in the pre-clinical development of an active anti-cancer product that we are eager to introduce into the clinic to further develop the technology," Wold said. "This patent demonstrates our innovation and the novelty of our approach.

"There is a long tradition of adenovirus research at Saint Louis University School of Medicine dating back to the 1950s, and it can be argued that SLU is the birthplace of adenovirus molecular virology," Wold said.


Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first M.D. degree west of the Mississippi River. Saint Louis University School of Medicine is a pioneer in geriatric medicine, organ transplantation, chronic disease prevention, cardiovascular disease, neurosciences and vaccine research, among others. The School of Medicine trains physicians and biomedical scientists, conducts medical research, and provides health services on a local, national and international level.

Joe Muehlenkamp | EurekAlert!
Further information:
http://www.slu.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>