Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The common cold as cancer fighter? SLU prof’s lifetime work moving into clinical trials

17.12.2003


Saint Louis University researchers receive a patent after decades of research.



Can the common cold ever be a good thing? It is if you’ve figured out a way to genetically engineer the virus so that it fights and kills cancerous cells - while leaving healthy cells intact.

That’s been the work of Dr. William Wold and his colleagues at Saint Louis University School of Medicine for the last 30 years.


"The potential is understandably huge," said Wold, whose work has just received a U.S. patent after years of study.

Dr. Wold, chair of the department of molecular microbiology and immunology, and his colleagues Karoly Toth, Konstantin Doronin, Ann E. Tollefson, and Mohan Kuppuswamy have found a way to convert the relatively benign "adenovirus" that causes the common cold into an anti-cancer drug that attacks and destroys cancerous cells.

"Human cancer is currently treated with surgery, radiation therapy, or chemotherapy, depending on the cancer type," Wold said. "These treatments can be highly successful, but new therapies are required, especially for tumors that have become resistant to chemo- or radiation-therapy."

Wold’s group has developed several new "adenovirus cancer gene therapy vectors," changing these genes so the virus will attack cancer cells.

"Some of our vectors are designed to destroy many different types of cancers, others are designed to be specific to colon or lung cancer. In preclinical testing these vectors were highly effective against cancerous tumors and did not harm normal tissues."

Wold and his colleagues have done this by modifying one gene so that the virus can grow in cancer cells but NOT normal cells and by boosting the activity of another gene that the virus normally uses to disrupt the cells it has infected. "When the virus infects cells, it takes the altered genes with it, and those genes attack cancer cells while leaving normal cells intact," Wold explained.

A U.S. patent (No. 6,627,190) was awarded this fall to Dr. Wold and his team of researchers. Pre-clinical testing is complete and is expected to move soon into clinical trials.

Now this patented technology has been issued and exclusively licensed to a company, Introgen Therapeutics, which made the announcement this morning. Introgen and VirRx, a biotechnology company founded by Wold and with a primary interest in cancer gene therapy, are collaborating on new therapies for cancer and other diseases.

"Our collaboration with Introgen has resulted in the pre-clinical development of an active anti-cancer product that we are eager to introduce into the clinic to further develop the technology," Wold said. "This patent demonstrates our innovation and the novelty of our approach.

"There is a long tradition of adenovirus research at Saint Louis University School of Medicine dating back to the 1950s, and it can be argued that SLU is the birthplace of adenovirus molecular virology," Wold said.


Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first M.D. degree west of the Mississippi River. Saint Louis University School of Medicine is a pioneer in geriatric medicine, organ transplantation, chronic disease prevention, cardiovascular disease, neurosciences and vaccine research, among others. The School of Medicine trains physicians and biomedical scientists, conducts medical research, and provides health services on a local, national and international level.

Joe Muehlenkamp | EurekAlert!
Further information:
http://www.slu.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>