Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain tumor growth requires abnormal neighbors

15.12.2003


For some brain tumors, the key to success is not just what you know but who you know, according to researchers at Washington University School of Medicine in St. Louis.



In trying to develop a mouse model of neurofibromatosis 1 (NF1), a genetic disorder that predisposes children to certain types of brain tumors, the team discovered that tumors only developed when all brain cells were genetically abnormal, not just the cell type that becomes cancerous. The study is featured on the cover of the Dec. 15 issue of the journal Cancer Research.

"We are quite excited about this report as it represents the first model of this type of tumor," says principal investigator David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology. "We’ve always assumed that cancer results from the loss of specific genes in a particular cell, but apparently that isn’t always the case. Our findings suggest that as in real estate, location is everything – a permissive environment may be the key to whether a tumor cell becomes cancerous or just sits dormant for a person’s entire life."


According to the National NF Foundation, NF1 is the most common neurological disorder caused by a single gene. The disorder can lead to a variety of complications including skin, spine and brain cancer. Up to 20 percent of patients with NF1 develop tumors in a type of support cell called an astrocyte along the optic nerve and optic chiasm, which transmit visual information from the eye to the brain.

Astrocytes that develop into tumors lack both copies of the Nf1 gene. So Gutmann’s team first developed genetically engineered mice in which all cells were normal except astrocytes, which lacked both copies of the Nf1 gene. To their surprise, the mice did not develop brain tumors.

Humans with NF1 are born with one normal and one mutated copy of the Nf1 gene in all cells in their bodies. Gutmann’s team therefore hypothesized that genetic abnormalities in brain cells surrounding astrocytes might be essential for tumor formation.

To test this theory, the team developed mice with no functional copies of the Nf1 gene in their astrocytes and only one functional copy in all other brain cells, a scenario identical to that of humans with the disease. Every mouse developed astrocyte tumors along the optic nerve or chiasm within the first 10 months.

According to Gutmann, understanding the events that lead to tumor growth is critical for learning how to predict -- and hopefully prevent -- tumors.

"It’s clear from our findings that tumors do not form simply by losing both copies of the Nf1 gene," he explains. "If we figure out what external cues are necessary to trigger tumor growth, we could try to shut off that switch and stop tumors dead in their tracks without having to correct the underlying genetic defect."

The potential for the mouse model used in this study to serve as a preclinical model of NF1 is enhanced by the team’s ability to detect tumors in their very early stages using a powerful 4.7-Tesla magnetic resonance imaging (MRI) scanner and algorithms developed by Gutmann’s colleagues at the Mallinckrodt Institute of Radiology at the School of Medicine. Their techniques and equipment enable them to detect tumors the size of a piece of thread.

"We’re now beginning to detect these tumors even earlier using MRI," Gutmann says. "I think we’ve gotten to the point where this mouse model can not only help us understand more about the cell biology underlying brain tumor development, but also provides a tool for developing and evaluating better treatments."


###
Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF, Garbow JR, Gutmann DH. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Research, vol. 63, pp. 8573-77, Dec. 15, 2003.

Funding from the National Institutes of Health, the Small Animal Imaging Resource Program, the United States Army Medical Research and Material Command’s Office of Congressionally Directed Medical Research Programs and the National Neurofibromatosis Foundation supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>