Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain tumor growth requires abnormal neighbors

15.12.2003


For some brain tumors, the key to success is not just what you know but who you know, according to researchers at Washington University School of Medicine in St. Louis.



In trying to develop a mouse model of neurofibromatosis 1 (NF1), a genetic disorder that predisposes children to certain types of brain tumors, the team discovered that tumors only developed when all brain cells were genetically abnormal, not just the cell type that becomes cancerous. The study is featured on the cover of the Dec. 15 issue of the journal Cancer Research.

"We are quite excited about this report as it represents the first model of this type of tumor," says principal investigator David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology. "We’ve always assumed that cancer results from the loss of specific genes in a particular cell, but apparently that isn’t always the case. Our findings suggest that as in real estate, location is everything – a permissive environment may be the key to whether a tumor cell becomes cancerous or just sits dormant for a person’s entire life."


According to the National NF Foundation, NF1 is the most common neurological disorder caused by a single gene. The disorder can lead to a variety of complications including skin, spine and brain cancer. Up to 20 percent of patients with NF1 develop tumors in a type of support cell called an astrocyte along the optic nerve and optic chiasm, which transmit visual information from the eye to the brain.

Astrocytes that develop into tumors lack both copies of the Nf1 gene. So Gutmann’s team first developed genetically engineered mice in which all cells were normal except astrocytes, which lacked both copies of the Nf1 gene. To their surprise, the mice did not develop brain tumors.

Humans with NF1 are born with one normal and one mutated copy of the Nf1 gene in all cells in their bodies. Gutmann’s team therefore hypothesized that genetic abnormalities in brain cells surrounding astrocytes might be essential for tumor formation.

To test this theory, the team developed mice with no functional copies of the Nf1 gene in their astrocytes and only one functional copy in all other brain cells, a scenario identical to that of humans with the disease. Every mouse developed astrocyte tumors along the optic nerve or chiasm within the first 10 months.

According to Gutmann, understanding the events that lead to tumor growth is critical for learning how to predict -- and hopefully prevent -- tumors.

"It’s clear from our findings that tumors do not form simply by losing both copies of the Nf1 gene," he explains. "If we figure out what external cues are necessary to trigger tumor growth, we could try to shut off that switch and stop tumors dead in their tracks without having to correct the underlying genetic defect."

The potential for the mouse model used in this study to serve as a preclinical model of NF1 is enhanced by the team’s ability to detect tumors in their very early stages using a powerful 4.7-Tesla magnetic resonance imaging (MRI) scanner and algorithms developed by Gutmann’s colleagues at the Mallinckrodt Institute of Radiology at the School of Medicine. Their techniques and equipment enable them to detect tumors the size of a piece of thread.

"We’re now beginning to detect these tumors even earlier using MRI," Gutmann says. "I think we’ve gotten to the point where this mouse model can not only help us understand more about the cell biology underlying brain tumor development, but also provides a tool for developing and evaluating better treatments."


###
Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF, Garbow JR, Gutmann DH. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Research, vol. 63, pp. 8573-77, Dec. 15, 2003.

Funding from the National Institutes of Health, the Small Animal Imaging Resource Program, the United States Army Medical Research and Material Command’s Office of Congressionally Directed Medical Research Programs and the National Neurofibromatosis Foundation supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>