Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain tumor growth requires abnormal neighbors

15.12.2003


For some brain tumors, the key to success is not just what you know but who you know, according to researchers at Washington University School of Medicine in St. Louis.



In trying to develop a mouse model of neurofibromatosis 1 (NF1), a genetic disorder that predisposes children to certain types of brain tumors, the team discovered that tumors only developed when all brain cells were genetically abnormal, not just the cell type that becomes cancerous. The study is featured on the cover of the Dec. 15 issue of the journal Cancer Research.

"We are quite excited about this report as it represents the first model of this type of tumor," says principal investigator David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology. "We’ve always assumed that cancer results from the loss of specific genes in a particular cell, but apparently that isn’t always the case. Our findings suggest that as in real estate, location is everything – a permissive environment may be the key to whether a tumor cell becomes cancerous or just sits dormant for a person’s entire life."


According to the National NF Foundation, NF1 is the most common neurological disorder caused by a single gene. The disorder can lead to a variety of complications including skin, spine and brain cancer. Up to 20 percent of patients with NF1 develop tumors in a type of support cell called an astrocyte along the optic nerve and optic chiasm, which transmit visual information from the eye to the brain.

Astrocytes that develop into tumors lack both copies of the Nf1 gene. So Gutmann’s team first developed genetically engineered mice in which all cells were normal except astrocytes, which lacked both copies of the Nf1 gene. To their surprise, the mice did not develop brain tumors.

Humans with NF1 are born with one normal and one mutated copy of the Nf1 gene in all cells in their bodies. Gutmann’s team therefore hypothesized that genetic abnormalities in brain cells surrounding astrocytes might be essential for tumor formation.

To test this theory, the team developed mice with no functional copies of the Nf1 gene in their astrocytes and only one functional copy in all other brain cells, a scenario identical to that of humans with the disease. Every mouse developed astrocyte tumors along the optic nerve or chiasm within the first 10 months.

According to Gutmann, understanding the events that lead to tumor growth is critical for learning how to predict -- and hopefully prevent -- tumors.

"It’s clear from our findings that tumors do not form simply by losing both copies of the Nf1 gene," he explains. "If we figure out what external cues are necessary to trigger tumor growth, we could try to shut off that switch and stop tumors dead in their tracks without having to correct the underlying genetic defect."

The potential for the mouse model used in this study to serve as a preclinical model of NF1 is enhanced by the team’s ability to detect tumors in their very early stages using a powerful 4.7-Tesla magnetic resonance imaging (MRI) scanner and algorithms developed by Gutmann’s colleagues at the Mallinckrodt Institute of Radiology at the School of Medicine. Their techniques and equipment enable them to detect tumors the size of a piece of thread.

"We’re now beginning to detect these tumors even earlier using MRI," Gutmann says. "I think we’ve gotten to the point where this mouse model can not only help us understand more about the cell biology underlying brain tumor development, but also provides a tool for developing and evaluating better treatments."


###
Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF, Garbow JR, Gutmann DH. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Research, vol. 63, pp. 8573-77, Dec. 15, 2003.

Funding from the National Institutes of Health, the Small Animal Imaging Resource Program, the United States Army Medical Research and Material Command’s Office of Congressionally Directed Medical Research Programs and the National Neurofibromatosis Foundation supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>