Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ebola virus-like particles prevent lethal Ebola virus infection

10.12.2003


Scientists have successfully immunized mice against Ebola virus using hollow virus-like particles, or VLPs, which are non-infectious but capable of provoking a robust immune response. These Ebola VLPs conferred complete protection to mice exposed to lethal doses of the virus.



The work could serve as a basis for development of vaccines and other countermeasures to Ebola, which causes hemorrhagic fever with case fatality rates as high as 80 percent in humans. The virus, which is infectious by aerosol, is of concern both as a global health threat and a potential agent of biological warfare or terrorism. Currently there are no available vaccines or therapies.

In a study published in this week’s online edition of Proceedings of the National Academy of Sciences, Sina Bavari and colleagues at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) describe creating VLPs from two Ebola virus proteins, glycoprotein (GP) and matrix protein (VP40). These VLPs resemble a shell of infectious viral particles but lack the genetic material necessary for reproduction.


When the VLPs were injected into mice, they activated both arms of the immune response. Specifically, they induced cell-mediated immunity via T cells and humoral immunity via B cells. Both are necessary for complete protection against the Ebola virus.

Having shown that the VLPs evoked a robust immune response, the team next examined whether this response could protect mice from lethal challenge with Ebola virus. Mice were vaccinated with VLPs three times at three-week intervals and challenged with the virus six weeks after the last vaccination. The result was 100 percent protection with no signs of illness in the immunized mice.

"This is astonishing work," said Colonel Erik A. Henchal, commander of USAMRIID. "The ability to produce self-assembling particles that resemble whole virus will give us a new tool to evaluate the combination of variables required to produce a protective immune response to Ebola virus."

According to Bavari, VLPs have already been tested and found efficacious as vaccines for several other viruses, including papillomavirus, HIV, parvovirus, and rotavirus. His team hopes to build upon its work by evaluating the efficacy of VLPs for both Ebola and Marburg, a related virus, in nonhuman primates.

"The beauty of this approach is that VLPs are not a traditional vaccine platform, so you don’t have to worry about the recipient building up an immunity to that platform," Bavari explained. "It looks like a virus, so you have the protective immune response, but it’s basically an empty shell."

VLPS also have potential application beyond vaccine development--for example, they could be used to develop diagnostic reagents for identifying Ebola-infected samples. In addition, generating VLPs containing additional structural proteins will be useful in determining the mechanisms of the immune responses to Ebola virus infection.

Study collaborators were Kelly L. Warfield, Catharine M. Bosio, Brent C. Welcher, Emily M. Deal, Alan Schmaljohn, and M. Javad Aman, all of USAMRIID, and Mansour Mohamadzadeh of the Department of Medicine at Tulane University.


USAMRIID, located at Fort Detrick, Maryland, is the lead laboratory for the Medical Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute’s mission is to conduct basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command.

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>