Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ebola virus-like particles prevent lethal Ebola virus infection

10.12.2003


Scientists have successfully immunized mice against Ebola virus using hollow virus-like particles, or VLPs, which are non-infectious but capable of provoking a robust immune response. These Ebola VLPs conferred complete protection to mice exposed to lethal doses of the virus.



The work could serve as a basis for development of vaccines and other countermeasures to Ebola, which causes hemorrhagic fever with case fatality rates as high as 80 percent in humans. The virus, which is infectious by aerosol, is of concern both as a global health threat and a potential agent of biological warfare or terrorism. Currently there are no available vaccines or therapies.

In a study published in this week’s online edition of Proceedings of the National Academy of Sciences, Sina Bavari and colleagues at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) describe creating VLPs from two Ebola virus proteins, glycoprotein (GP) and matrix protein (VP40). These VLPs resemble a shell of infectious viral particles but lack the genetic material necessary for reproduction.


When the VLPs were injected into mice, they activated both arms of the immune response. Specifically, they induced cell-mediated immunity via T cells and humoral immunity via B cells. Both are necessary for complete protection against the Ebola virus.

Having shown that the VLPs evoked a robust immune response, the team next examined whether this response could protect mice from lethal challenge with Ebola virus. Mice were vaccinated with VLPs three times at three-week intervals and challenged with the virus six weeks after the last vaccination. The result was 100 percent protection with no signs of illness in the immunized mice.

"This is astonishing work," said Colonel Erik A. Henchal, commander of USAMRIID. "The ability to produce self-assembling particles that resemble whole virus will give us a new tool to evaluate the combination of variables required to produce a protective immune response to Ebola virus."

According to Bavari, VLPs have already been tested and found efficacious as vaccines for several other viruses, including papillomavirus, HIV, parvovirus, and rotavirus. His team hopes to build upon its work by evaluating the efficacy of VLPs for both Ebola and Marburg, a related virus, in nonhuman primates.

"The beauty of this approach is that VLPs are not a traditional vaccine platform, so you don’t have to worry about the recipient building up an immunity to that platform," Bavari explained. "It looks like a virus, so you have the protective immune response, but it’s basically an empty shell."

VLPS also have potential application beyond vaccine development--for example, they could be used to develop diagnostic reagents for identifying Ebola-infected samples. In addition, generating VLPs containing additional structural proteins will be useful in determining the mechanisms of the immune responses to Ebola virus infection.

Study collaborators were Kelly L. Warfield, Catharine M. Bosio, Brent C. Welcher, Emily M. Deal, Alan Schmaljohn, and M. Javad Aman, all of USAMRIID, and Mansour Mohamadzadeh of the Department of Medicine at Tulane University.


USAMRIID, located at Fort Detrick, Maryland, is the lead laboratory for the Medical Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute’s mission is to conduct basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command.

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>