Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein That Predicts Tamoxifen Resistance is Identified

05.12.2003


Kimberly Blackwell, M.D.


Researchers at the Duke Comprehensive Cancer Center have identified a protein that breast cancer tumors over-produce when they become resistant to the drug tamoxifen. The researchers said their finding could help them predict which tumors will benefit from tamoxifen -- the front-line drug used to treat operable breast cancer -- and which tumors won’t.

Future studies will be able to determine if tumors that over-produce this protein, called MTA-1, could be treated with a different hormonal therapy following their initial treatment with surgery, chemotherapy and/or radiation, said Kimberly Blackwell, M.D., assistant professor of oncology at the Duke Comprehensive Cancer Center.

Blackwell will present her team’s findings on Dec. 4 at the 26th annual San Antonio Breast Cancer Symposium.



Their latest findings supports last year’s discovery, reported at the same annual meeting, in which Blackwell demonstrated that tamoxifen-resistant tumors actually change their cellular characteristics to become responsive to other types of drugs. Blackwell says that elevated levels of MTA-1 represent one of these cellular changes in tumors that stop responding to tamoxifen.

"MTA-1 is just one of the proteins that plays a role in tamoxifen resistance, but it is one important step toward helping us better target our therapies toward each woman’s particular type of tumor," said Blackwell. "Theoretically, we could biopsy women at the time of diagnosis and select an alternative drug to tamoxifen if their tumors over-express MTA-1."

Furthermore, she said, MTA-1 is known to be a predictor of poor prognosis and the potential for breast cancer metastasis, so that testing for its presence prior to treatment could help them devise more aggressive strategies from the outset.

In years past, tamoxifen was the only option to help prevent breast cancers from recurring in women with estrogen-positive tumors, said Blackwell. But a percentage of women develop resistance to the drug.

To better understand this phenomenon, Blackwell and colleagues developed a strain of mice whose tumors eventually became resistant to tamoxifen. Once tamoxifen resistance was achieved, they conducted a gene array analysis to determine which genes were over-expressed in the new tumor line. They identified 20 different such genes, and found that MTA-1 was a gene that was strongly over-expressed in the tamoxifen-resistant tumors.

To date, scientists have found only a few other genes or proteins over-expressed in tamoxifen-resistant tumors, making the new discovery an important one for determining how a tumor will respond to treatment.

"We have a multitude of hormonally based drugs at our disposal that are designed to treat or prevent breast cancer and its recurrence," said Blackwell. "Our ultimate goal is to test tumors at the time of diagnosis to determine what their molecular signatures are and then to select the best therapy aimed at treating the tumor."

Other authors on the research team, all from Duke, include Mark Dewhirst, Ph.D., Donald McDonnell, Ph.D., Holly Dressman, M.D., Stacey A. Snyder, and Jeffrey R. Marks, Ph.D.

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7268

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>