Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein That Predicts Tamoxifen Resistance is Identified

05.12.2003


Kimberly Blackwell, M.D.


Researchers at the Duke Comprehensive Cancer Center have identified a protein that breast cancer tumors over-produce when they become resistant to the drug tamoxifen. The researchers said their finding could help them predict which tumors will benefit from tamoxifen -- the front-line drug used to treat operable breast cancer -- and which tumors won’t.

Future studies will be able to determine if tumors that over-produce this protein, called MTA-1, could be treated with a different hormonal therapy following their initial treatment with surgery, chemotherapy and/or radiation, said Kimberly Blackwell, M.D., assistant professor of oncology at the Duke Comprehensive Cancer Center.

Blackwell will present her team’s findings on Dec. 4 at the 26th annual San Antonio Breast Cancer Symposium.



Their latest findings supports last year’s discovery, reported at the same annual meeting, in which Blackwell demonstrated that tamoxifen-resistant tumors actually change their cellular characteristics to become responsive to other types of drugs. Blackwell says that elevated levels of MTA-1 represent one of these cellular changes in tumors that stop responding to tamoxifen.

"MTA-1 is just one of the proteins that plays a role in tamoxifen resistance, but it is one important step toward helping us better target our therapies toward each woman’s particular type of tumor," said Blackwell. "Theoretically, we could biopsy women at the time of diagnosis and select an alternative drug to tamoxifen if their tumors over-express MTA-1."

Furthermore, she said, MTA-1 is known to be a predictor of poor prognosis and the potential for breast cancer metastasis, so that testing for its presence prior to treatment could help them devise more aggressive strategies from the outset.

In years past, tamoxifen was the only option to help prevent breast cancers from recurring in women with estrogen-positive tumors, said Blackwell. But a percentage of women develop resistance to the drug.

To better understand this phenomenon, Blackwell and colleagues developed a strain of mice whose tumors eventually became resistant to tamoxifen. Once tamoxifen resistance was achieved, they conducted a gene array analysis to determine which genes were over-expressed in the new tumor line. They identified 20 different such genes, and found that MTA-1 was a gene that was strongly over-expressed in the tamoxifen-resistant tumors.

To date, scientists have found only a few other genes or proteins over-expressed in tamoxifen-resistant tumors, making the new discovery an important one for determining how a tumor will respond to treatment.

"We have a multitude of hormonally based drugs at our disposal that are designed to treat or prevent breast cancer and its recurrence," said Blackwell. "Our ultimate goal is to test tumors at the time of diagnosis to determine what their molecular signatures are and then to select the best therapy aimed at treating the tumor."

Other authors on the research team, all from Duke, include Mark Dewhirst, Ph.D., Donald McDonnell, Ph.D., Holly Dressman, M.D., Stacey A. Snyder, and Jeffrey R. Marks, Ph.D.

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7268

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>