Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique kills cancerous cells, leaves healthy cells intact

02.12.2003


Chemists at the University of Illinois at Urbana-Champaign have produced a molecule that selectively kills cancerous cells in a desired way and leaves healthy cells virtually untouched.



While encouraging, the findings don’t mean a new treatment is imminent. The basic laboratory experiments were done in microtiter dishes, where the compound was simply exposed to leukemia and lymphoma cells and healthy white blood cells from mice.

"It’s hard to say where this discovery may fit into the big picture, but the pathway we’ve found is real; it is very provocative," said Paul J. Hergenrother, a professor of chemistry, who directed the study funded by the National Science Foundation.


The study appears in the Dec. 3 issue of the Journal of the American Chemical Society. The compound, which is referred to as 13-D in the study, already is being tested by the National Cancer Institute. The University of Illinois has applied for a patent on it.

"The next big step would be to show that this compound works in an animal model," Hergenrother said. "We are very interested in the selectivity of this compound. We now are trying to track down exactly what protein target this compound is binding to in the cancer cells. If we can isolate the protein receptor, we may find a totally new anti-cancer target."

Hergenrother and his doctoral students Vitaliy Nesterenko and Karson S. Putt manufactured a library of 88 artificial compounds based on the structures of certain natural products. Three of the compounds showed a significant ability to kill cancer cells. Those three were further screened to determine if they were killing the cancer cells through apoptosis or necrosis.

Apoptosis is desired because cells die in a programmed fashion and are simply engulfed by other cells. Necrosis is essentially an accidental breakdown that results in the spilling of cellular material that triggers an undesirable anti-inflammatory response.

Compound 13-D was found to have the strongest cancer-killing effect and the only one to induce a cysteine protease known as caspase-3 as well as blebbing (a pinching off of the cellular membrane) and cell shrinkage, all of which are hallmarks of apoptosis.

"Once we had a compound that killed by apoptosis, we did the key experiment to see if the compound induced cell death selectively, choosing cancerous cells over non-cancerous white blood cells," Hergenrother said. "Compound 13-D showed virtually no toxicity toward the actively dividing T-cells while almost completely killing the lymphoma and leukemia cells."

Such results are desirable, because many current human therapeutic approaches result in undesired side effects such as anemia and major gastrointestinal problems.

Additionally, Hergenrother said, if the biological pathways can be isolated it may be possible to manufacture compounds that not only encourage apoptosis in cancer cells but also inhibit it in healthy cells, a potential benefit to sufferers of Alzheimer’s and Parkinson’s diseases in which many cells die off unnecessarily.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>