Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique kills cancerous cells, leaves healthy cells intact

02.12.2003


Chemists at the University of Illinois at Urbana-Champaign have produced a molecule that selectively kills cancerous cells in a desired way and leaves healthy cells virtually untouched.



While encouraging, the findings don’t mean a new treatment is imminent. The basic laboratory experiments were done in microtiter dishes, where the compound was simply exposed to leukemia and lymphoma cells and healthy white blood cells from mice.

"It’s hard to say where this discovery may fit into the big picture, but the pathway we’ve found is real; it is very provocative," said Paul J. Hergenrother, a professor of chemistry, who directed the study funded by the National Science Foundation.


The study appears in the Dec. 3 issue of the Journal of the American Chemical Society. The compound, which is referred to as 13-D in the study, already is being tested by the National Cancer Institute. The University of Illinois has applied for a patent on it.

"The next big step would be to show that this compound works in an animal model," Hergenrother said. "We are very interested in the selectivity of this compound. We now are trying to track down exactly what protein target this compound is binding to in the cancer cells. If we can isolate the protein receptor, we may find a totally new anti-cancer target."

Hergenrother and his doctoral students Vitaliy Nesterenko and Karson S. Putt manufactured a library of 88 artificial compounds based on the structures of certain natural products. Three of the compounds showed a significant ability to kill cancer cells. Those three were further screened to determine if they were killing the cancer cells through apoptosis or necrosis.

Apoptosis is desired because cells die in a programmed fashion and are simply engulfed by other cells. Necrosis is essentially an accidental breakdown that results in the spilling of cellular material that triggers an undesirable anti-inflammatory response.

Compound 13-D was found to have the strongest cancer-killing effect and the only one to induce a cysteine protease known as caspase-3 as well as blebbing (a pinching off of the cellular membrane) and cell shrinkage, all of which are hallmarks of apoptosis.

"Once we had a compound that killed by apoptosis, we did the key experiment to see if the compound induced cell death selectively, choosing cancerous cells over non-cancerous white blood cells," Hergenrother said. "Compound 13-D showed virtually no toxicity toward the actively dividing T-cells while almost completely killing the lymphoma and leukemia cells."

Such results are desirable, because many current human therapeutic approaches result in undesired side effects such as anemia and major gastrointestinal problems.

Additionally, Hergenrother said, if the biological pathways can be isolated it may be possible to manufacture compounds that not only encourage apoptosis in cancer cells but also inhibit it in healthy cells, a potential benefit to sufferers of Alzheimer’s and Parkinson’s diseases in which many cells die off unnecessarily.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>