Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solution to hospital infections could be in the air

01.12.2003


A breakthrough in the fight against infections acquired in hospital could be achieved thanks to pioneering new research.



The project is investigating the use of ionisers to eradicate airborne infections in hospitals – a technique that could deliver major health benefits and financial savings.

Starting in December, the 3-year initiative will be carried out by engineers at the University of Leeds with funding from the Swindon-based Engineering and Physical Sciences Research Council (EPSRC).


Infections originating in hospital are a serious and widespread problem, affecting around 10% of patients during their stay. There is increasing evidence that up to 20% of these infections are transmitted by an airborne route – at a cost of £100-200 million a year in England alone.

The project will build on a recent successful study at St James’s University Hospital in Leeds. This found that using ionisers to negatively charge air particles in an intensive care unit prevented all infections caused by the Acinetobacter pathogen. Immune to nearly all currently available antibiotics, Acinetobacter infections are a growing problem in hospitals and can be fatal in some groups of patients.

In the new project, the same team will set out to understand the science behind this success and provide a firm basis for future use of the technique. They will focus on the biological and physical processes associated with negative air ionisation and airborne transmission of infection, and establish guidelines for the effective use of ionisers in hospital buildings.

Much of the research will be carried out in the University’s state-of-the-art aerobiological test facility, which was part funded by EPSRC. The facility incorporates a 32m3 climatic chamber where temperature, humidity and ventilation rate can be varied and controlled. The chamber enables researchers to mimic various clinical environments and perform a wide range of experiments involving aerosols doped with micro-organisms.

The project team is being led by Dr Clive Beggs of the University of Leeds’ Aerobiological Research Group. Dr Beggs says: “Negative air ionisation could have a dramatic impact on a problem that has been attracting increasing publicity and causing growing concern”.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>