Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitric oxide can prevent lung disease and death for premature infants

27.11.2003


Low doses of inhaled nitric oxide can decrease the risk of chronic lung disease and death by nearly one-fourth in premature infants who have respiratory distress syndrome (RDS), report researchers from the University of Chicago in the Nov. 27, 2003, issue of the New England Journal of Medicine.



Nitric oxide also can cut the risk of severe bleeding into the brain and loss of brain tissue – devastating complications of prematurity – by almost half.

The combination of prematurity and RDS may be lethal despite aggressive treatment, including mechanical ventilation. Approximately 60,000 children are born each year in the United States weighing less than 1,500 grams (about 3.3 pounds). Many of those who survive suffer permanent lung damage, which can slow growth, increase susceptibility to infection and is associated with abnormal brain development.


In the study, 64 percent of infants who received standard therapy died or developed chronic lung disease, compared to only 49 percent of those who received standard therapy plus inhaled nitric oxide.

"Inhaled nitric oxide gives neonatologists a simple and effective tool to help protect premature infants," says Michael Schreiber, M.D., associate professor of pediatrics at the University of Chicago and director of the study. "Our data demonstrate that starting nitric oxide soon after birth in at-risk babies has few downsides and makes a major difference in their long-term health."

Adding small amounts of nitric oxide to oxygen for neonates requiring ventilation may soon become standard practice, Schreiber predicts, stressing the need to start treatment early. "Chronic lung disease often begins in utero," he says, "so if you’re going to intervene, you need to start therapy as soon as possible."

Nitric oxide, a gas produced by the body and used to transmit chemical signals, was approved in 1999 by the Food and Drug Administration for use in full-term babies. Because it can relax constricted blood vessels, it has been used in infants with pulmonary hypertension, a life-threatening disease in full-term infants.

This study, however, was designed to test its ability to protect premature infants’ undeveloped lungs from the stresses caused by their disease and by mechanical ventilation – a much larger and more vulnerable group of patients.

Between October 1998 and October 2001, 207 infants in the neonatal intensive care unit at the University of Chicago Children’s Hospital were enrolled in this study. The premature infants in this study averaged 27 weeks gestation (full term is 38-40 weeks) and weighed an average of 1,000 grams (2.2 pounds). Participants required a ventilator and surfactant treatment to help breathing.

Beginning within a few hours of birth and continuing for one week, the infants received – through the ventilator – either oxygen plus inhaled nitric oxide, or oxygen alone. The nitric oxide doses were very small, 10 parts per million for the first day and 5 PPM for the rest of the week.

Eighty-five percent of the 105 infants in the nitric oxide group survived, compared to 78 percent of the 102 infants who received oxygen alone. Furthermore, 61 percent of the 89 surviving nitric oxide patients were free of chronic lung disease, compared to 47 percent of the 79 who survived without nitric oxide.

"Nitric oxide did not rescue the sickest infants," Schreiber says, "but it was able to limit the extent of lung disease in many newborns at risk, preventing the lung damage that can cause lifelong illness."

Because nitric oxide may interfere with platelets and increase bleeding time in adults and full-term babies, the researchers were concerned that their treatment might increase the risk of two common problems associated with prematurity. These complications – known as intraventricular hemorrhage (bleeding into the ventricles, the fluid spaces within the brain) and periventricular leukomalacia (damage to the brain tissue near the ventricles) – are the primary cause of serious long-term brain damage in premature infants and are associated with the subsequent development of cerebral palsy and mental retardation.

They were reassured to find that nitric oxide did not cause either problem. Instead, it seemed to prevent the most severe brain injuries. Although nitric oxide did not reduce the risk of all neurologic complications, only 12 percent of the infants who received it suffered a severe brain hemorrhage or tissue damage, compared to 24 percent of those who did not.

Infants who received nitric oxide also tended to spend less time on the ventilator (a median of 16 days vs. 28.5 days) and required less time in the hospital (65 days vs. 76 days).

Although the study stopped enrolling new patients in 2001, the researchers intend to follow these children for five years. So far, no late complications have emerged. The research team also is planning a follow-up study providing inhaled nitric oxide to ventilator-dependent newborns for one month. They will compare those results to treatment of one week to help determine the optimal duration and dose.


INOTherapeutics Inc. of Clinton, N.J., which supplies nitric oxide for medical use, funded this study in response to a proposal by the investigators. The company was not involved in the study design, safety monitoring, data analysis and interpretation, or manuscript preparation.

Additional authors of the paper include Karen Gin-Masten, M.D., Jeremy Marks, M.D., Ph.D., Grace Lee, B.A., and Pimol Srisuparp, M.D., of the department of pediatrics, and Dezheng Huo, M.S., of the department of health studies, all at the University of Chicago.

Karyn Odway | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>