Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitric oxide can prevent lung disease and death for premature infants

27.11.2003


Low doses of inhaled nitric oxide can decrease the risk of chronic lung disease and death by nearly one-fourth in premature infants who have respiratory distress syndrome (RDS), report researchers from the University of Chicago in the Nov. 27, 2003, issue of the New England Journal of Medicine.



Nitric oxide also can cut the risk of severe bleeding into the brain and loss of brain tissue – devastating complications of prematurity – by almost half.

The combination of prematurity and RDS may be lethal despite aggressive treatment, including mechanical ventilation. Approximately 60,000 children are born each year in the United States weighing less than 1,500 grams (about 3.3 pounds). Many of those who survive suffer permanent lung damage, which can slow growth, increase susceptibility to infection and is associated with abnormal brain development.


In the study, 64 percent of infants who received standard therapy died or developed chronic lung disease, compared to only 49 percent of those who received standard therapy plus inhaled nitric oxide.

"Inhaled nitric oxide gives neonatologists a simple and effective tool to help protect premature infants," says Michael Schreiber, M.D., associate professor of pediatrics at the University of Chicago and director of the study. "Our data demonstrate that starting nitric oxide soon after birth in at-risk babies has few downsides and makes a major difference in their long-term health."

Adding small amounts of nitric oxide to oxygen for neonates requiring ventilation may soon become standard practice, Schreiber predicts, stressing the need to start treatment early. "Chronic lung disease often begins in utero," he says, "so if you’re going to intervene, you need to start therapy as soon as possible."

Nitric oxide, a gas produced by the body and used to transmit chemical signals, was approved in 1999 by the Food and Drug Administration for use in full-term babies. Because it can relax constricted blood vessels, it has been used in infants with pulmonary hypertension, a life-threatening disease in full-term infants.

This study, however, was designed to test its ability to protect premature infants’ undeveloped lungs from the stresses caused by their disease and by mechanical ventilation – a much larger and more vulnerable group of patients.

Between October 1998 and October 2001, 207 infants in the neonatal intensive care unit at the University of Chicago Children’s Hospital were enrolled in this study. The premature infants in this study averaged 27 weeks gestation (full term is 38-40 weeks) and weighed an average of 1,000 grams (2.2 pounds). Participants required a ventilator and surfactant treatment to help breathing.

Beginning within a few hours of birth and continuing for one week, the infants received – through the ventilator – either oxygen plus inhaled nitric oxide, or oxygen alone. The nitric oxide doses were very small, 10 parts per million for the first day and 5 PPM for the rest of the week.

Eighty-five percent of the 105 infants in the nitric oxide group survived, compared to 78 percent of the 102 infants who received oxygen alone. Furthermore, 61 percent of the 89 surviving nitric oxide patients were free of chronic lung disease, compared to 47 percent of the 79 who survived without nitric oxide.

"Nitric oxide did not rescue the sickest infants," Schreiber says, "but it was able to limit the extent of lung disease in many newborns at risk, preventing the lung damage that can cause lifelong illness."

Because nitric oxide may interfere with platelets and increase bleeding time in adults and full-term babies, the researchers were concerned that their treatment might increase the risk of two common problems associated with prematurity. These complications – known as intraventricular hemorrhage (bleeding into the ventricles, the fluid spaces within the brain) and periventricular leukomalacia (damage to the brain tissue near the ventricles) – are the primary cause of serious long-term brain damage in premature infants and are associated with the subsequent development of cerebral palsy and mental retardation.

They were reassured to find that nitric oxide did not cause either problem. Instead, it seemed to prevent the most severe brain injuries. Although nitric oxide did not reduce the risk of all neurologic complications, only 12 percent of the infants who received it suffered a severe brain hemorrhage or tissue damage, compared to 24 percent of those who did not.

Infants who received nitric oxide also tended to spend less time on the ventilator (a median of 16 days vs. 28.5 days) and required less time in the hospital (65 days vs. 76 days).

Although the study stopped enrolling new patients in 2001, the researchers intend to follow these children for five years. So far, no late complications have emerged. The research team also is planning a follow-up study providing inhaled nitric oxide to ventilator-dependent newborns for one month. They will compare those results to treatment of one week to help determine the optimal duration and dose.


INOTherapeutics Inc. of Clinton, N.J., which supplies nitric oxide for medical use, funded this study in response to a proposal by the investigators. The company was not involved in the study design, safety monitoring, data analysis and interpretation, or manuscript preparation.

Additional authors of the paper include Karen Gin-Masten, M.D., Jeremy Marks, M.D., Ph.D., Grace Lee, B.A., and Pimol Srisuparp, M.D., of the department of pediatrics, and Dezheng Huo, M.S., of the department of health studies, all at the University of Chicago.

Karyn Odway | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>