Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain’s ’daydream’ network offers detection for Alzheimer’s diagnosis

26.11.2003


Researchers tracking the ebb and flow of cognitive function in the human brain have discovered surprising differences in the ability of younger and older adults to shut down a brain network normally active during periods of passive daydreaming. The differences, which are especially pronounced in people with dementia, may provide a clear and powerful new method for diagnosing individuals in the very early stages of Alzheimer’s disease.



"In young adults, there are parts of the brain that are very active during a passive free-thinking state, but these areas appear to shut down dramatically or ’turn off’ when the person is asked to do something," said Cindy Lustig, research team member and post-doctoral fellow in psychology at Washington University in St. Louis. "Interestingly, older people, especially those with Alzheimer’s disease, don’t show this same kind of brain activity during free- thinking, resting conditions."

In a study published Nov. 25 in the Proceedings of the National Academies of Science, Lustig and colleagues detail results of functional magnetic resonance imaging (fMRI) tests conducted on groups of young adults, older adults and adults experiencing early signs of Alzheimer’s-related dementia.


Although fMRI testing is widely used to track regional increases in brain activity during completion of specific mental tasks, such as language, memory or problem solving, this study focuses on what happens in regions that are active when the brain has no particular task at hand, regions that are focal points for a baseline, passive processing mode, one that seems to operate when the mind free to wander and daydream.

"What we found in our study is that rather than turning these regions off when asked to concentrate, as young adults do, people with Alzheimer’s seem to turn them on," Lustig said. "This might reflect a ’broken brain’ in Alzheimer’s, making it hard for people to turn these brain regions on or off appropriately; more optimistically, it might be an attempt to compensate for the memory problems that come with Alzheimer’s."

Other members of the Washington University in St. Louis / Howard Hughes Medical Institute research team include Abraham Z. Snyder, Mehul Bhakta, Katherine O’Brien, Mark McAvoy, Marcus E. Raichle, John C. Morris and Randy L. Buckner, all of whom are affiliated with the departments of psychology in Arts and Sciences and/or the departments of neurology and radiology in the School of Medicine.

Raichle, a pioneer in the use of positron emission tomography (PET) to image changes in brain activity, has been an advocate for more research into brain deactivations, a process by which the brain reduces activity in one region so that resources can be shifted to other areas where more challenging mental tasks are currently being processed. Irregularities in brain deactivation patterns have been noted in other neurological illnesses, including amnesia, schizophrenia and Fragile X syndrome.

Recent research has provided mounting evidence supporting the existence within the brain of a "default network," a set of interconnected brain areas that carry out routine, passive mental processes, such as monitoring the environment, registering internal emotions and other forms of largely undirected thought and reflection. Brain areas thought to be included in this network are the medial frontal, the lateral parietal and the posterior cingulate regions of the cortex.

"The posterior cingulate cortex was the site of the largest and most intriguing differences between the groups," Buckner said. "Whereas young adults showed decreases in this region after a transient initial activation, Alzheimer’s participants maintained an above-baseline activation throughout the task period."

The study also identified a number of other significant differences in the timing and magnitude of changes in default network activity among young adults, older adults and older adults with early stages of Alzheimer’s.

Other studies have shown that young adults have more activity in this default network than do older adults during so-called passive conditions where they are not given any particular task to think about. What this new study found is that older adults also do not seem to shut down or "deactivate" the default network as much when they are given something to concentrate on.

"The reduced deactivation in the older adult groups are especially surprising, given that the performance data suggested that they found the task more difficult than did the young adults, " Buckner noted. "In young adults, greater task difficulty is usually associated with greater deactivation in these areas."

Interestingly, there is one situation in which young adults exhibit some activity in the default or daydreaming regions even while they are actively tackling a mental task elsewhere in the brain; that is when the task at hand involves a person’s autobiographical memory. For instance, if someone asks what you had for breakfast or how you feel about something that happened in your past, then you might activate parts of the default passive processing network as you search for the answer.

"Since the brain’s default processing network is connected to brain areas that are heavily involved with memory, it could be that people with memory problems are turning the network on in an attempt to compensate for the memory damage caused by normal aging or Alzheimer’s," Lustig said.

"The biggest, most obvious thing that we know about these default regions is that older adults, especially those with Alzheimer’s, are doing something different with them when they’re in a free-thinking mode. The reasons for this aren’t entirely clear, but may have something to do with their memory problems.

"In the long run, this quirk may help us understand what’s going wrong with fundamental cognitive processes that underlie mental declines associated with aging and Alzheimer’s. In the meantime, we’re very interested in whether these changes can be used to identify older adults in the earliest stages of Alzheimer’s disease so that they can begin treatment as soon as possible."

Gerry Everding | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>