Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nicotine metabolite shows promise for improving memory, protecting brain cells

12.11.2003


Dr. Jerry J. Buccafusco presents his findings about the benefits of the nicotine metabolite cotinine at the November meeting of the Society for Neuroscience.


A nicotine metabolite shows promise for improving memory and protecting brain cells from diseases such as Alzheimer’s and Parkinson’s without addiction and other side effects of nicotine, says a Medical College of Georgia researcher.

Laboratory studies also indicate the metabolite cotinine may be a safe treatment for the debilitating psychotic behavior of schizophrenics, Dr. Jerry J. Buccafusco, pharmacologist and director of the MCG Alzheimer’s Research Center, says in an abstract presented at the 33rd Annual Meeting of the Society for Neuroscience in New Orleans, Nov. 8-12.

"Many people have thought the drug was an essentially inactive metabolite, but we have shown that at appropriate doses, it is memory enhancing, neuro-protective and it has antipsychotic activities," says Dr. Buccafusco, who is also a research pharmacologist at the Department of Veterans Affairs Medical Center in Augusta.



"We hope this new appreciation for cotinine’s potential will encourage people to take a look at cotinine and, if not the drug itself, maybe design newer compounds based on cotinine’s structure that have fewer side effects than existing therapies," he says, noting the need to expand laboratory studies before any clinical work can begin.

"In the case of Alzheimer’s, cotinine may share nicotine’s ability to improve attention and memory and at the same time reduce or halt disease progression. One advantage of cotinine is that it could be used long-term with little concern about serious side effects and substance abuse," Dr. Buccafusco says.

Cotinine stays in the body much longer than short-acting nicotine but appears much safer than its parent alkaloid, which is highly addictive and causes blood vessel constriction, nausea and stomach cramps. Cotinine’s biggest use has been as a marker for tobacco use by measuring urine levels; its therapeutic potential in curbing smoking also has been explored.

"So cotinine has been taken by humans as a drug and has gotten mixed reviews in the literature about its effectiveness," says Dr. Buccafusco, who got interested in the metabolite after noting that the memory-enhancing benefit of nicotine lasted long after the drug was eliminated from the body. Nicotine has a half-life in the body of about an hour, yet he noted in studies that the monkeys continued to derive memory benefits long after the nicotine had left the body.

To explore that potential, he used a computer-assisted matching game where monkeys first pick one of three colors on a screen and get a food reward for picking the same color from a choice of two a few moments later. Both young and old monkeys that received cotinine got more correct answers than the ones that didn’t; results were similar to those Dr. Buccafusco has found with nicotine.

Studying cotinine’s effect on neuron-like cells in culture, he was surprised to find cotinine was also as effective as nicotine at preventing cell death. In this model, he took growth factor away from the cells, so they start to die as they do in neurodegenerative diseases such as Alzheimer’s. "If you put nicotine in there, either before or at the time you take away growth factors, it totally prevents the cells from dying. When we tried cotinine in that assay, it worked exactly like nicotine, very well," Dr. Buccasfusco says. "So we are excited about this possibility."

To explore its antipsychotic potential, he and colleague Dr. Alvin V. Terry Jr., a pharmacist and pharmacologist on the faculty of the University of Georgia and MCG, used a standard model for studying antipsychotic drugs: laboratory rats given schizophrenic-producing drugs that block the natural filtering capabilities of the brain.

Normally rats, or people for that matter, would be startled by a loud noise. But if a less intense noise precedes it, over time, the rodents will be less startled by the second, louder noise. Antipsychotic medications have a similar effect in reducing the startle response.

"Our drug cotinine was nearly as effective as a standard clinically used anti-schizophrenic drug in reversing this response," Dr. Buccafusco said. "This finding holds tremendous promise for patients suffering from schizophrenia since the drugs currently in use are oftentimes associated with severe, long-term neurological side effects, such as parkinsonian-like tremors and memory problems."

Much work remains, including further exploration of how cotinine works and how long it works. Dr. Buccafusco’s lab recently received a transgenic mouse model for Alzheimers’ that develops Alzheimer-like plaques in the brain within the first year of life.

One of his graduate students, Ajay Sood, will use this model for his thesis, studying the neuroprotective potential of cotinine, nicotine and similar drugs in a living disease model. "That is the ultimate test for neuroprotection," Dr. Buccafusco says.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/news/2003NewsRel/cotinine.html

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>