Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nicotine metabolite shows promise for improving memory, protecting brain cells

12.11.2003


Dr. Jerry J. Buccafusco presents his findings about the benefits of the nicotine metabolite cotinine at the November meeting of the Society for Neuroscience.


A nicotine metabolite shows promise for improving memory and protecting brain cells from diseases such as Alzheimer’s and Parkinson’s without addiction and other side effects of nicotine, says a Medical College of Georgia researcher.

Laboratory studies also indicate the metabolite cotinine may be a safe treatment for the debilitating psychotic behavior of schizophrenics, Dr. Jerry J. Buccafusco, pharmacologist and director of the MCG Alzheimer’s Research Center, says in an abstract presented at the 33rd Annual Meeting of the Society for Neuroscience in New Orleans, Nov. 8-12.

"Many people have thought the drug was an essentially inactive metabolite, but we have shown that at appropriate doses, it is memory enhancing, neuro-protective and it has antipsychotic activities," says Dr. Buccafusco, who is also a research pharmacologist at the Department of Veterans Affairs Medical Center in Augusta.



"We hope this new appreciation for cotinine’s potential will encourage people to take a look at cotinine and, if not the drug itself, maybe design newer compounds based on cotinine’s structure that have fewer side effects than existing therapies," he says, noting the need to expand laboratory studies before any clinical work can begin.

"In the case of Alzheimer’s, cotinine may share nicotine’s ability to improve attention and memory and at the same time reduce or halt disease progression. One advantage of cotinine is that it could be used long-term with little concern about serious side effects and substance abuse," Dr. Buccafusco says.

Cotinine stays in the body much longer than short-acting nicotine but appears much safer than its parent alkaloid, which is highly addictive and causes blood vessel constriction, nausea and stomach cramps. Cotinine’s biggest use has been as a marker for tobacco use by measuring urine levels; its therapeutic potential in curbing smoking also has been explored.

"So cotinine has been taken by humans as a drug and has gotten mixed reviews in the literature about its effectiveness," says Dr. Buccafusco, who got interested in the metabolite after noting that the memory-enhancing benefit of nicotine lasted long after the drug was eliminated from the body. Nicotine has a half-life in the body of about an hour, yet he noted in studies that the monkeys continued to derive memory benefits long after the nicotine had left the body.

To explore that potential, he used a computer-assisted matching game where monkeys first pick one of three colors on a screen and get a food reward for picking the same color from a choice of two a few moments later. Both young and old monkeys that received cotinine got more correct answers than the ones that didn’t; results were similar to those Dr. Buccafusco has found with nicotine.

Studying cotinine’s effect on neuron-like cells in culture, he was surprised to find cotinine was also as effective as nicotine at preventing cell death. In this model, he took growth factor away from the cells, so they start to die as they do in neurodegenerative diseases such as Alzheimer’s. "If you put nicotine in there, either before or at the time you take away growth factors, it totally prevents the cells from dying. When we tried cotinine in that assay, it worked exactly like nicotine, very well," Dr. Buccasfusco says. "So we are excited about this possibility."

To explore its antipsychotic potential, he and colleague Dr. Alvin V. Terry Jr., a pharmacist and pharmacologist on the faculty of the University of Georgia and MCG, used a standard model for studying antipsychotic drugs: laboratory rats given schizophrenic-producing drugs that block the natural filtering capabilities of the brain.

Normally rats, or people for that matter, would be startled by a loud noise. But if a less intense noise precedes it, over time, the rodents will be less startled by the second, louder noise. Antipsychotic medications have a similar effect in reducing the startle response.

"Our drug cotinine was nearly as effective as a standard clinically used anti-schizophrenic drug in reversing this response," Dr. Buccafusco said. "This finding holds tremendous promise for patients suffering from schizophrenia since the drugs currently in use are oftentimes associated with severe, long-term neurological side effects, such as parkinsonian-like tremors and memory problems."

Much work remains, including further exploration of how cotinine works and how long it works. Dr. Buccafusco’s lab recently received a transgenic mouse model for Alzheimers’ that develops Alzheimer-like plaques in the brain within the first year of life.

One of his graduate students, Ajay Sood, will use this model for his thesis, studying the neuroprotective potential of cotinine, nicotine and similar drugs in a living disease model. "That is the ultimate test for neuroprotection," Dr. Buccafusco says.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/news/2003NewsRel/cotinine.html

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>