Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nicotine metabolite shows promise for improving memory, protecting brain cells

12.11.2003


Dr. Jerry J. Buccafusco presents his findings about the benefits of the nicotine metabolite cotinine at the November meeting of the Society for Neuroscience.


A nicotine metabolite shows promise for improving memory and protecting brain cells from diseases such as Alzheimer’s and Parkinson’s without addiction and other side effects of nicotine, says a Medical College of Georgia researcher.

Laboratory studies also indicate the metabolite cotinine may be a safe treatment for the debilitating psychotic behavior of schizophrenics, Dr. Jerry J. Buccafusco, pharmacologist and director of the MCG Alzheimer’s Research Center, says in an abstract presented at the 33rd Annual Meeting of the Society for Neuroscience in New Orleans, Nov. 8-12.

"Many people have thought the drug was an essentially inactive metabolite, but we have shown that at appropriate doses, it is memory enhancing, neuro-protective and it has antipsychotic activities," says Dr. Buccafusco, who is also a research pharmacologist at the Department of Veterans Affairs Medical Center in Augusta.



"We hope this new appreciation for cotinine’s potential will encourage people to take a look at cotinine and, if not the drug itself, maybe design newer compounds based on cotinine’s structure that have fewer side effects than existing therapies," he says, noting the need to expand laboratory studies before any clinical work can begin.

"In the case of Alzheimer’s, cotinine may share nicotine’s ability to improve attention and memory and at the same time reduce or halt disease progression. One advantage of cotinine is that it could be used long-term with little concern about serious side effects and substance abuse," Dr. Buccafusco says.

Cotinine stays in the body much longer than short-acting nicotine but appears much safer than its parent alkaloid, which is highly addictive and causes blood vessel constriction, nausea and stomach cramps. Cotinine’s biggest use has been as a marker for tobacco use by measuring urine levels; its therapeutic potential in curbing smoking also has been explored.

"So cotinine has been taken by humans as a drug and has gotten mixed reviews in the literature about its effectiveness," says Dr. Buccafusco, who got interested in the metabolite after noting that the memory-enhancing benefit of nicotine lasted long after the drug was eliminated from the body. Nicotine has a half-life in the body of about an hour, yet he noted in studies that the monkeys continued to derive memory benefits long after the nicotine had left the body.

To explore that potential, he used a computer-assisted matching game where monkeys first pick one of three colors on a screen and get a food reward for picking the same color from a choice of two a few moments later. Both young and old monkeys that received cotinine got more correct answers than the ones that didn’t; results were similar to those Dr. Buccafusco has found with nicotine.

Studying cotinine’s effect on neuron-like cells in culture, he was surprised to find cotinine was also as effective as nicotine at preventing cell death. In this model, he took growth factor away from the cells, so they start to die as they do in neurodegenerative diseases such as Alzheimer’s. "If you put nicotine in there, either before or at the time you take away growth factors, it totally prevents the cells from dying. When we tried cotinine in that assay, it worked exactly like nicotine, very well," Dr. Buccasfusco says. "So we are excited about this possibility."

To explore its antipsychotic potential, he and colleague Dr. Alvin V. Terry Jr., a pharmacist and pharmacologist on the faculty of the University of Georgia and MCG, used a standard model for studying antipsychotic drugs: laboratory rats given schizophrenic-producing drugs that block the natural filtering capabilities of the brain.

Normally rats, or people for that matter, would be startled by a loud noise. But if a less intense noise precedes it, over time, the rodents will be less startled by the second, louder noise. Antipsychotic medications have a similar effect in reducing the startle response.

"Our drug cotinine was nearly as effective as a standard clinically used anti-schizophrenic drug in reversing this response," Dr. Buccafusco said. "This finding holds tremendous promise for patients suffering from schizophrenia since the drugs currently in use are oftentimes associated with severe, long-term neurological side effects, such as parkinsonian-like tremors and memory problems."

Much work remains, including further exploration of how cotinine works and how long it works. Dr. Buccafusco’s lab recently received a transgenic mouse model for Alzheimers’ that develops Alzheimer-like plaques in the brain within the first year of life.

One of his graduate students, Ajay Sood, will use this model for his thesis, studying the neuroprotective potential of cotinine, nicotine and similar drugs in a living disease model. "That is the ultimate test for neuroprotection," Dr. Buccafusco says.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/news/2003NewsRel/cotinine.html

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>