Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medication ’wearing off’ a bigger problem for Parkinson’s patients than physicians may realize

24.10.2003


Patients with Parkinson’s disease (PD) who are taking levodopa therapy – the most widely-used agent to treat the illness – may experience the effects of their medication “wearing off” sooner than their health care providers realize. New data presented Oct. 19 at the Parkinson’s Study Group meeting in San Francisco concluded that a specifically-designed patient questionnaire identified symptoms related to “wearing off” more frequently than a clinical assessment by a movement disorder specialist.

“Although levodopa remains the foundation of Parkinson’s disease therapy, the medical community has long recognized that its use can be limited due to the inability to control Parkinson’s disease symptoms over time,” said investigator Robert A. Hauser, M.D., M.B.A., director of the Parkinson’s Disease and Movement Disorders Center of the University of South Florida in Tampa and member of an international consortium of researchers known as the End-of-Dose Wearing Off (EODWO) Working Group. “However, this study shows that end-of-dose ‘wearing off’ may be a bigger problem for Parkinson’s disease patients than physicians and other members of the health care community realize.”

Within one to two years, almost 50 percent of PD patients receiving levodopa therapy begin to notice that their medication lasts for shorter periods, causing symptoms to re-emerge before the next dose. This phenomenon is known as “wearing off.” Eventually, the effect of a levodopa dose may decrease from eight hours when patients begin levodopa therapy to only one to two hours. “Wearing off” is associated with the re-emergence of motor symptoms (e.g. tremor and problems with balance), non-motor symptoms (e.g. anxiety, fatigue, mood changes, and restlessness), and autonomic nervous system dysfunction (e.g. sweating and hypersalivation).



“To date, the frequency of end-of-dose ‘wearing off’ in a general neurology practice is unknown, and no specific tools exist to aid clinical diagnoses of its signs and symptoms,” said Dr. Hauser. “Because there are new medications available that can help to improve symptom control throughout more of the day, it is important for physicians to have a simple way to identify these symptoms.”

A group of 10 international Movement Disorder specialists (the End-of-Dose Wearing Off Working Group) collaborated to assess prospectively whether or not a specifically designed patient questionnaire can identify the same or more subjects suffering from end-of-dose "wearing off" than a clinical assessment. The blinded study used the AliProject, a web-enabled database of patients treated at participating Parkinson’s disease research centers in the United States. The clinical database was developed by the Muhammed Ali Parkinson Research Center.

Three hundred patients diagnosed with Parkinson’s disease participated in the study. All were age 30 or older, and had Parkinson’s disease for less than 5 years. Of the 289 patients who completed the study, 87.5% were on levodopa therapy versus other anti-parkinsonian medications. The duration of levodopa therapy for these patients was 1.96+1.53 years.

Investigators found that the clinical assessment identified “wearing off” in 85 patients (29.4%) compared with 165 patients (57.1%) who self-reported symptoms of “wearing off” on the patient questionnaire. When asked about difficulties associated with these symptoms, 40% of respondents indicated that the symptoms were at least very troublesome. The most commonly listed troublesome symptoms included tremor, balance difficulty, and reduced dexterity.

Parkinson’s disease, a chronic and progressive neurological condition, affects approximately 1.5 million Americans. Symptoms include limbs that tremble; slowness of movement; stiffness and rigidity of limbs, and gait or balance problems. As the disease progresses, these symptoms usually increase and impact a person’s ability to work and function.

Marissa Emerson | University of South Florida
Further information:
http://www.hsc.usf.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>