Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medication ’wearing off’ a bigger problem for Parkinson’s patients than physicians may realize

24.10.2003


Patients with Parkinson’s disease (PD) who are taking levodopa therapy – the most widely-used agent to treat the illness – may experience the effects of their medication “wearing off” sooner than their health care providers realize. New data presented Oct. 19 at the Parkinson’s Study Group meeting in San Francisco concluded that a specifically-designed patient questionnaire identified symptoms related to “wearing off” more frequently than a clinical assessment by a movement disorder specialist.

“Although levodopa remains the foundation of Parkinson’s disease therapy, the medical community has long recognized that its use can be limited due to the inability to control Parkinson’s disease symptoms over time,” said investigator Robert A. Hauser, M.D., M.B.A., director of the Parkinson’s Disease and Movement Disorders Center of the University of South Florida in Tampa and member of an international consortium of researchers known as the End-of-Dose Wearing Off (EODWO) Working Group. “However, this study shows that end-of-dose ‘wearing off’ may be a bigger problem for Parkinson’s disease patients than physicians and other members of the health care community realize.”

Within one to two years, almost 50 percent of PD patients receiving levodopa therapy begin to notice that their medication lasts for shorter periods, causing symptoms to re-emerge before the next dose. This phenomenon is known as “wearing off.” Eventually, the effect of a levodopa dose may decrease from eight hours when patients begin levodopa therapy to only one to two hours. “Wearing off” is associated with the re-emergence of motor symptoms (e.g. tremor and problems with balance), non-motor symptoms (e.g. anxiety, fatigue, mood changes, and restlessness), and autonomic nervous system dysfunction (e.g. sweating and hypersalivation).



“To date, the frequency of end-of-dose ‘wearing off’ in a general neurology practice is unknown, and no specific tools exist to aid clinical diagnoses of its signs and symptoms,” said Dr. Hauser. “Because there are new medications available that can help to improve symptom control throughout more of the day, it is important for physicians to have a simple way to identify these symptoms.”

A group of 10 international Movement Disorder specialists (the End-of-Dose Wearing Off Working Group) collaborated to assess prospectively whether or not a specifically designed patient questionnaire can identify the same or more subjects suffering from end-of-dose "wearing off" than a clinical assessment. The blinded study used the AliProject, a web-enabled database of patients treated at participating Parkinson’s disease research centers in the United States. The clinical database was developed by the Muhammed Ali Parkinson Research Center.

Three hundred patients diagnosed with Parkinson’s disease participated in the study. All were age 30 or older, and had Parkinson’s disease for less than 5 years. Of the 289 patients who completed the study, 87.5% were on levodopa therapy versus other anti-parkinsonian medications. The duration of levodopa therapy for these patients was 1.96+1.53 years.

Investigators found that the clinical assessment identified “wearing off” in 85 patients (29.4%) compared with 165 patients (57.1%) who self-reported symptoms of “wearing off” on the patient questionnaire. When asked about difficulties associated with these symptoms, 40% of respondents indicated that the symptoms were at least very troublesome. The most commonly listed troublesome symptoms included tremor, balance difficulty, and reduced dexterity.

Parkinson’s disease, a chronic and progressive neurological condition, affects approximately 1.5 million Americans. Symptoms include limbs that tremble; slowness of movement; stiffness and rigidity of limbs, and gait or balance problems. As the disease progresses, these symptoms usually increase and impact a person’s ability to work and function.

Marissa Emerson | University of South Florida
Further information:
http://www.hsc.usf.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>