Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic pathway critical to growth of digestive tract tumors

23.10.2003



The signal, called Hedgehog, tells cells when and where to grow during embryonic development and is turned on in primitive cells, or stem cells, in adult tissues to trigger tissue repair. Researchers at Hopkins and elsewhere have already linked Hedgehog and its signaling pathway to a non-fatal skin cancer (basal cell carcinoma), a deadly lung cancer and the most common childhood brain cancer (medulloblastoma).

"Blocking this signal may one day help treat cancers for which there are currently few or no mechanism-based therapies," says senior author Philip Beachy, Ph.D., professor of molecular biology and genetics in Hopkins’ Institute for Basic Biomedical Sciences and a Howard Hughes Medical Institute investigator. "For right now, the biggest question is whether it will pan out in people."


In experiments with cancer cell lines and tumor samples from patients, the scientists found that Hedgehog’s signal is required for the cancers’ growth. Moreover, a three-week course of a plant-derived chemical called cyclopamine, known to block Hedgehog, killed these cancers when grown in mice, causing no apparent harm to the animals.

"In mice, blocking the Hedgehog signal made the implanted tumors disappear," says the study’s first author, David Berman, M.D., Ph.D., assistant professor of pathology at Hopkins. "It’s been about three and a half months since we stopped the cyclopamine, and still the tumors haven’t returned."

Unfortunately, cyclopamine is unlikely to be useful for patients because there just isn’t enough of it, so the search is on to find Hedgehog blockers that could be made in quantities necessary for human studies, say the researchers.

The researchers checked for Hedgehog activation in cell lines and fresh samples of digestive tract tumors because the gut comes from the same part of the embryo -- the endoderm -- as the lung, says Anirban Maitra, MBBS, assistant professor of pathology. Earlier this year, a team from Hopkins linked Hedgehog activation to small cell lung cancer, providing reason to anticipate Hedgehog’s involvement in a variety of other cancers, notes Berman.

"Because of Hedgehog’s important roles in these tissues during development, we hypothesized that ’reactivation’ of the pathway occurs in adult life during cancer development in these organs," adds Maitra, whose procedure for obtaining fresh samples from surgically removed tumors provided the opportunity to analyze cancers unaltered by years of laboratory growth. "Our studies prove this hypothesis to be true."

The pathway’s link to another batch of cancers support the idea that cancer may arise -- in part -- from abnormal growth of stem cells inside mature organs.

The scientists speculate that primitive cells in the lining of the digestive tract may turn on the normal Hedgehog pathway to repair tissue damaged by long-term exposure to an environmental toxin or irritant, such as excess stomach acid chronically rising into the esophagus.

If the damaging environmental irritant is also carcinogenic, such as tobacco smoke, the chances go up that these long-lived primitive cells eventually may collect the right genetic mutations to trigger cancer development, suggests Beachy.

Authors on the study linking Hedgehog to digestive tract tumors are Berman, Maitra, Beachy, Sunil Karhadkar, Rocio Montes de Oca, Meg Gerstenblith, Antony Parker and James Eshleman of the Johns Hopkins School of Medicine; Kimberly Briggs and Neil Watkins of the Johns Hopkins Kimmel Cancer Center; and Yutaka Shimada of Kyoto University, Japan. The project was funded by the family of Margaret Lee and by grants from the National Institutes of Health.

A related paper, focusing on pancreatic cancer and written by researchers at the University of California at San Francisco and Harvard Medical School, appears in the same issue of the journal.


Under a licensing agreement between Curis Inc. and The Johns Hopkins University, Beachy and the University hold equity in Curis and are entitled to a share of royalties from sales of the products described in this article. Beachy also receives payment and equity for service as a consultant to Curis Inc. The terms of this arrangement are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.nature.com/nature

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>