Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Alzheimer’s disease: Animal research points to new direction for therapy

06.10.2003


Saint Louis University study suggests protein can´t cross blood brain barrier


ST. LOUIS -- Alzheimer´s disease may be caused by a problem transporting a certain protein across the blood brain barrier and out of the brain, according to new Saint Louis University research published in the October issue of Neuroscience.

The findings are important, says William A. Banks, M.D., a Saint Louis University professor and the lead author of the article, because they give us a new approach for treating Alzheimer´s disease.

"It´s going to be a big piece to solving the Alzheimer´s disease puzzle," says Dr. Banks, a professor of geriatrics in the department of internal medicine and professor of pharmacological science at Saint Louis University School of Medicine. "If one could reverse the transport deficit problem, the system should be able to pump the protein out again. The impaired transporter problem may be an easier therapeutic target."



Normally, amyloid beta protein, the protein thought to cause Alzheimer´s disease, leaves the brain and crosses the blood brain barrier, which is a wall of blood vessels that feed the brain and regulate the entry and exit of brain chemicals. But in persons with Alzheimer´s disease, amyloid beta protein becomes blocked in the brain and can´t make it across the blood brain barrier. The more amyloid beta protein accumulates, the tougher it is for the blood brain barrier to move it out, and the more disabled a person becomes.

Because the transport deficit causes the amyloid beta protein to accumulate, scientists should focus on finding ways to destroy the protein with enzymes or pushing the protein across the blood brain barrier and out of the brain. Dr. Banks says fixing the system that transports amyloid beta protein across the blood brain barrier is "a viable therapeutic target."

"We need to find therapies to bring the transportation system back on line to pump the amyloid beta protein out of the brain," says Dr. Banks, who also is a staff physician at Veterans Affairs Medical Center in St. Louis.

The research analyzed the accumulation of amyloid beta protein in a mouse model of Alzheimer´s disease.

Nancy Solomon | EurekAlert!

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>