Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contrast mammography reveals hard-to-find cancers

30.09.2003


A new technique accurately identifies breast cancers that are difficult to detect with conventional mammography, according to a study appearing in the October issue of the journal Radiology.



"The dual-energy contrast-enhanced digital subtraction mammography technique is feasible for hard-to-demonstrate breast cancers and is worthy of further study," said the study’s lead author, John M. Lewin, M.D. Dr. Lewin is an associate professor of radiology at the University of Colorado Health Sciences Center in Denver, and director of breast imaging research and co-director of breast imaging at the University of Colorado Hospital Breast Center in Aurora.

Conventional mammography misses 10 percent to 20 percent of breast cancers, including 9 percent of those that can be felt during physical examination.


Dual-energy, contrast-enhanced digital subtraction mammography involves the injection of a contrast agent to highlight new blood vessel development that accompanies malignant growth. Two images are taken at different energy levels and subtracted from one another to disclose the tumor. Similar techniques are being successfully employed in other areas of radiology.

"We expect that dual-energy, contrast-enhanced digital subtraction mammography will become an alternative to breast magnetic resonance imaging (MRI) in evaluating difficult to interpret mammograms or for screening women who have an elevated risk for breast cancer," Dr. Lewin said. "This technique may also be useful for examining breasts of women who have already been diagnosed with one cancer to identify potential undetected malignancies," he added.

For the study, the researchers used dual-energy, contrast-enhanced digital subtraction mammography to evaluate 26 patients whose mammograms or breast exams warranted a biopsy.

"By using a contrast agent with digital mammography, we were able to see cancers that were invisible on conventional mammography. About half of the women in the study had cancer, and this technique lit up all the malignancies," Dr. Lewin said.

Specifically, the researchers found that 13 of the patients had invasive cancers. Eleven of the invasive cancers were strongly enhanced, one showed moderate enhancement and another was weakly enhanced. In another patient, a case of intraductal carcinoma in situ showed a weakly enhanced duct. The 12 benign cases either showed weak enhancement or none at all.

Dr. Lewin said that the new technique is less costly than MRI, which is being used to screen high-risk women. The procedure is similar to conventional mammography with the addition of an intravenous injection.

"This is still a research technique," Dr. Lewin said. "If the results we achieve in further research are as good as what we have so far reported, then I expect this could be clinically available in two to five years."

The University of Colorado Health Sciences Center, the University of California, San Francisco and Brigham and Women’s Hospital in Boston are planning a joint clinical trial to study this technique’s appropriateness for screening women at very high risk for breast cancer. The trial would begin in October 2004.


Radiology is a monthly scientific journal devoted to clinical radiology and allied sciences. The journal is edited by Anthony V. Proto, M.D., School of Medicine, Virginia Commonwealth University, Richmond, Virginia. Radiology is owned and published by the Radiological Society of North America Inc. (http://radiology.rsnajnls.org).

The Radiological Society of North America (RSNA) is an association of more than 33,000 radiologists, radiation oncologists and related scientists committed to promoting excellence through education and by fostering research, with the ultimate goal of improving patient care. The Society’s headquarters are located at 820 Jorie Boulevard, Oak Brook, Ill. 60523-2251. (http://www.rsna.org).

"Dual-Energy, Contrast-enhanced Digital Subtraction Mammography: Feasibility." Collaborating with Dr. Lewin on this study were Pamela K. Isaacs, D.O., Virginia Vance, R.N., and Fred J. Larke, M.S.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org
http://radiology.rsnajnls.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>