Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Stop leak’ solution found for toxicity problems in experimental gene therapy

09.09.2003


A Duke University research collaboration has identified a likely route for "leakage" of therapeutic gene-bearing viruses out of tumors in experimental anti-cancer gene therapy experiments in laboratory animals. The group also found this toxic leakage can be avoided by using a chemical extracted from common brown algae.



Their work was described in a 9:30 a.m. Sept. 8 presentation at the American Chemical Society’s national meeting in New York, as well as in a research paper accepted for publication in the journal Molecular Cancer Therapeutics.

Investigators from the biomedical engineering department at Duke’s Pratt School of Engineering and the radiation oncology department at the Duke Medical Center collaborated to trace why high concentrations of the protein produced by the therapeutic genes were present in the wrong places during animal experiments directed against tumors.


The experiments involved transplanting tumors into the legs of mice and then injecting those tumors with adenoviruses genetically altered to carry the cancer-fighting gene. About 24 hours after those adenoviruses infected the tumor cells, the virus-carried genes could then begin manufacturing a known anti-cancer protein called mouse interleukin-12 (IL-12).

When the researchers first tried the experiment using concentrations of IL-12 genes in the viruses they judged high enough to treat the cancer, "the animals died within 10 minutes," said Fan Yuan, a Duke associate professor of biomedical engineering, in an interview.

Exploring the reasons for the sudden deaths, the group used lower gene amounts that the animals could tolerate to trace what happened in their bodies during the extended infection and gene expression process.

They found that the virus preparations did not stay in the tumors as planned but also moved elsewhere in significant concentrations, principally to the liver.

The reason for that unanticipated migration was tumor blood vessel damage by the injection needle, Yuan said. After entering those vessels through the tiny wounds, viruses could quickly migrate through the entire interconnected bloodstream.

Identifying the problem, the Duke researchers also discovered an answer when they mixed the virus preparation with alginate, a major constituent of the cell walls of brown algae.

Injecting the combination of alginate and virus into the mouse tumors reduced by eight-fold the concentration of IL-12 in the animals’ livers compared to injecting the gene-bearing virus alone, the investigators found.

"The alginate solution is simple and straightforward," said Yuan, who added that this algae preparation is a nontoxic biocompatible polysaccharide used in tissue engineering.

The researchers suspect that the alginate solution’s high viscosity, about 1,000 times higher than water’s, may block most of the viruses from leaking out of the tumor tissue through injection wounds.

Such an action, Yuan acknowledged, would resemble how certain automotive products can stop leaks in radiators and power steering or oil circulation systems. "That’s the same analogy," he said. "It’s like Jello."

But that high viscosity also makes injecting the viruses into tumors more difficult. "You really have to push very hard," Yuan said.

So the researchers are now investigating whether other kinds of long-chained molecular polymers will block viral leaks as effectively as the alginate. With those, "you can use a very small force to push them through the needle," Yuan said.


###
Besides Yuan, others in group include Yong Wang, Yuan’s graduate student; Ava Krol, Yuan’s research associate; Chuan-Yuan Li, an associate research professor in radiation oncology; and Jim Kang Hu and Yong-Ping Li, research associates of Chuan-Yuan Li.

The work was supported by the National Science Foundation and National Institutes of Health.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>