Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Stop leak’ solution found for toxicity problems in experimental gene therapy

09.09.2003


A Duke University research collaboration has identified a likely route for "leakage" of therapeutic gene-bearing viruses out of tumors in experimental anti-cancer gene therapy experiments in laboratory animals. The group also found this toxic leakage can be avoided by using a chemical extracted from common brown algae.



Their work was described in a 9:30 a.m. Sept. 8 presentation at the American Chemical Society’s national meeting in New York, as well as in a research paper accepted for publication in the journal Molecular Cancer Therapeutics.

Investigators from the biomedical engineering department at Duke’s Pratt School of Engineering and the radiation oncology department at the Duke Medical Center collaborated to trace why high concentrations of the protein produced by the therapeutic genes were present in the wrong places during animal experiments directed against tumors.


The experiments involved transplanting tumors into the legs of mice and then injecting those tumors with adenoviruses genetically altered to carry the cancer-fighting gene. About 24 hours after those adenoviruses infected the tumor cells, the virus-carried genes could then begin manufacturing a known anti-cancer protein called mouse interleukin-12 (IL-12).

When the researchers first tried the experiment using concentrations of IL-12 genes in the viruses they judged high enough to treat the cancer, "the animals died within 10 minutes," said Fan Yuan, a Duke associate professor of biomedical engineering, in an interview.

Exploring the reasons for the sudden deaths, the group used lower gene amounts that the animals could tolerate to trace what happened in their bodies during the extended infection and gene expression process.

They found that the virus preparations did not stay in the tumors as planned but also moved elsewhere in significant concentrations, principally to the liver.

The reason for that unanticipated migration was tumor blood vessel damage by the injection needle, Yuan said. After entering those vessels through the tiny wounds, viruses could quickly migrate through the entire interconnected bloodstream.

Identifying the problem, the Duke researchers also discovered an answer when they mixed the virus preparation with alginate, a major constituent of the cell walls of brown algae.

Injecting the combination of alginate and virus into the mouse tumors reduced by eight-fold the concentration of IL-12 in the animals’ livers compared to injecting the gene-bearing virus alone, the investigators found.

"The alginate solution is simple and straightforward," said Yuan, who added that this algae preparation is a nontoxic biocompatible polysaccharide used in tissue engineering.

The researchers suspect that the alginate solution’s high viscosity, about 1,000 times higher than water’s, may block most of the viruses from leaking out of the tumor tissue through injection wounds.

Such an action, Yuan acknowledged, would resemble how certain automotive products can stop leaks in radiators and power steering or oil circulation systems. "That’s the same analogy," he said. "It’s like Jello."

But that high viscosity also makes injecting the viruses into tumors more difficult. "You really have to push very hard," Yuan said.

So the researchers are now investigating whether other kinds of long-chained molecular polymers will block viral leaks as effectively as the alginate. With those, "you can use a very small force to push them through the needle," Yuan said.


###
Besides Yuan, others in group include Yong Wang, Yuan’s graduate student; Ava Krol, Yuan’s research associate; Chuan-Yuan Li, an associate research professor in radiation oncology; and Jim Kang Hu and Yong-Ping Li, research associates of Chuan-Yuan Li.

The work was supported by the National Science Foundation and National Institutes of Health.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>