Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Stop leak’ solution found for toxicity problems in experimental gene therapy

09.09.2003


A Duke University research collaboration has identified a likely route for "leakage" of therapeutic gene-bearing viruses out of tumors in experimental anti-cancer gene therapy experiments in laboratory animals. The group also found this toxic leakage can be avoided by using a chemical extracted from common brown algae.



Their work was described in a 9:30 a.m. Sept. 8 presentation at the American Chemical Society’s national meeting in New York, as well as in a research paper accepted for publication in the journal Molecular Cancer Therapeutics.

Investigators from the biomedical engineering department at Duke’s Pratt School of Engineering and the radiation oncology department at the Duke Medical Center collaborated to trace why high concentrations of the protein produced by the therapeutic genes were present in the wrong places during animal experiments directed against tumors.


The experiments involved transplanting tumors into the legs of mice and then injecting those tumors with adenoviruses genetically altered to carry the cancer-fighting gene. About 24 hours after those adenoviruses infected the tumor cells, the virus-carried genes could then begin manufacturing a known anti-cancer protein called mouse interleukin-12 (IL-12).

When the researchers first tried the experiment using concentrations of IL-12 genes in the viruses they judged high enough to treat the cancer, "the animals died within 10 minutes," said Fan Yuan, a Duke associate professor of biomedical engineering, in an interview.

Exploring the reasons for the sudden deaths, the group used lower gene amounts that the animals could tolerate to trace what happened in their bodies during the extended infection and gene expression process.

They found that the virus preparations did not stay in the tumors as planned but also moved elsewhere in significant concentrations, principally to the liver.

The reason for that unanticipated migration was tumor blood vessel damage by the injection needle, Yuan said. After entering those vessels through the tiny wounds, viruses could quickly migrate through the entire interconnected bloodstream.

Identifying the problem, the Duke researchers also discovered an answer when they mixed the virus preparation with alginate, a major constituent of the cell walls of brown algae.

Injecting the combination of alginate and virus into the mouse tumors reduced by eight-fold the concentration of IL-12 in the animals’ livers compared to injecting the gene-bearing virus alone, the investigators found.

"The alginate solution is simple and straightforward," said Yuan, who added that this algae preparation is a nontoxic biocompatible polysaccharide used in tissue engineering.

The researchers suspect that the alginate solution’s high viscosity, about 1,000 times higher than water’s, may block most of the viruses from leaking out of the tumor tissue through injection wounds.

Such an action, Yuan acknowledged, would resemble how certain automotive products can stop leaks in radiators and power steering or oil circulation systems. "That’s the same analogy," he said. "It’s like Jello."

But that high viscosity also makes injecting the viruses into tumors more difficult. "You really have to push very hard," Yuan said.

So the researchers are now investigating whether other kinds of long-chained molecular polymers will block viral leaks as effectively as the alginate. With those, "you can use a very small force to push them through the needle," Yuan said.


###
Besides Yuan, others in group include Yong Wang, Yuan’s graduate student; Ava Krol, Yuan’s research associate; Chuan-Yuan Li, an associate research professor in radiation oncology; and Jim Kang Hu and Yong-Ping Li, research associates of Chuan-Yuan Li.

The work was supported by the National Science Foundation and National Institutes of Health.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>