Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease-causing genetic mutations in sperm increase with men’s age

20.08.2003


There’s a lot said about a woman’s ticking biological clock, but male biology doesn’t age as gracefully as men might like to think.



By analyzing sperm from men of various ages, scientists from the McKusick-Nathans Institute for Genetic Medicine at Johns Hopkins have discovered that older men’s sperm is more likely to contain disease-causing genetic mutations that also seem to increase a sperm’s chances of fertilizing an egg.

The findings, which appear in the advance online section of the American Journal of Human Genetics, emerged during efforts to explain why a rare genetic disease is more common in children born to older fathers. The disease, Apert syndrome, leads to webbed fingers and early fusion of the skull bones, which must be surgically corrected.


The researchers found that mutation rates in sperm increased as men aged, but not enough to fully account for the increased incidence of Apert syndrome in children born to older fathers, leading to the suspicion that the disease-causing mutations confer some benefit to the sperm, despite the mutations’ effects on the resulting baby.

"Mutations causing this disease occur more frequently in the sperm of older men, but the mutation rate isn’t quite as high as the incidence of Apert syndrome," says Ethylin Jabs, M.D., director of the Center for Craniofacial Development and Disorders at Johns Hopkins. "For some reason, a sperm with one of these mutations is more likely to be used to make a baby than normal sperm."

While Apert syndrome itself affects only 1 in 160,000 births, the scientists believe a combination of increased mutation rate and "mutation advantage" might also be behind some of the 20 or so other genetic conditions linked to older fathers, including achrondroplasia dwarfism. These disorders begin to increase rapidly with the father’s age at about the same time as maternal risks increase -- age 33 to 35. Most of the evidence for paternal age effects has come from determining how many children with these conditions are born to fathers of various ages.

For the current study, the Hopkins scientists studied sperm from 148 men of various ages and looked for two genetic changes that are responsible for 99 percent of Apert syndrome cases. They found that men over 60 were, on average, three times as likely as men under 30 to have sperm with at least one of these changes. The mutations didn’t appear in the men’s blood.

"Men over age 52 are six times more likely than a 27-year-old to have a child with Apert syndrome, so the mutation rate alone can’t account for the condition’s link to paternal age," says first author Rivka Glaser, a graduate student in the human genetics and molecular biology program at Johns Hopkins.

"Literally hundreds of millions of sperm are made in each batch, so in most cases there are still many normal sperm available," adds Jabs, also a professor of pediatrics. "Because the few mutated sperm are more likely to be used to make a baby than would be expected, the mutation must provide them some competitive advantage over their normal counterparts."

The two genetic mutations that cause most cases of Apert syndrome affect a protein called fibroblast growth-factor receptor-2 (FGFR2). The mutated versions of FGFR-2 don’t bind to its usual targets with the same affinity, perhaps contributing to the sperm’s likelihood of fertilizing an egg, the researchers suggest.

The scientists looked for the two FGFR2 mutations in sperm from two groups of men who did not have children with Apert syndrome. These controls -- 57 from a Johns Hopkins study and 76 from an ongoing study at Lawrence Livermore National Laboratory -- were asked to provide sperm and blood samples and to complete a health survey. They also analyzed sperm from 15 fathers of children with Apert syndrome.


The research was funded by the National Institutes of Health, the Environmental Protection Agency and the Department of Energy. Authors on the study are Glaser, Jabs, and Rebecca Schulman of Johns Hopkins School of Medicine; Karl Broman of the Johns Hopkins Bloomberg School of Public Health; Brenda Eskenazi of the University of California at Berkeley School of Public Health; and Andrew Wyrobek of Lawrence Livermore National Laboratory.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.hopkinsmedicine.org/craniofacial/Home/
http://www.journals.uchicago.edu/AJHG/journal/issues/v73n4/40284/brief/40284.abstract.html

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>