Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease-causing genetic mutations in sperm increase with men’s age

20.08.2003


There’s a lot said about a woman’s ticking biological clock, but male biology doesn’t age as gracefully as men might like to think.



By analyzing sperm from men of various ages, scientists from the McKusick-Nathans Institute for Genetic Medicine at Johns Hopkins have discovered that older men’s sperm is more likely to contain disease-causing genetic mutations that also seem to increase a sperm’s chances of fertilizing an egg.

The findings, which appear in the advance online section of the American Journal of Human Genetics, emerged during efforts to explain why a rare genetic disease is more common in children born to older fathers. The disease, Apert syndrome, leads to webbed fingers and early fusion of the skull bones, which must be surgically corrected.


The researchers found that mutation rates in sperm increased as men aged, but not enough to fully account for the increased incidence of Apert syndrome in children born to older fathers, leading to the suspicion that the disease-causing mutations confer some benefit to the sperm, despite the mutations’ effects on the resulting baby.

"Mutations causing this disease occur more frequently in the sperm of older men, but the mutation rate isn’t quite as high as the incidence of Apert syndrome," says Ethylin Jabs, M.D., director of the Center for Craniofacial Development and Disorders at Johns Hopkins. "For some reason, a sperm with one of these mutations is more likely to be used to make a baby than normal sperm."

While Apert syndrome itself affects only 1 in 160,000 births, the scientists believe a combination of increased mutation rate and "mutation advantage" might also be behind some of the 20 or so other genetic conditions linked to older fathers, including achrondroplasia dwarfism. These disorders begin to increase rapidly with the father’s age at about the same time as maternal risks increase -- age 33 to 35. Most of the evidence for paternal age effects has come from determining how many children with these conditions are born to fathers of various ages.

For the current study, the Hopkins scientists studied sperm from 148 men of various ages and looked for two genetic changes that are responsible for 99 percent of Apert syndrome cases. They found that men over 60 were, on average, three times as likely as men under 30 to have sperm with at least one of these changes. The mutations didn’t appear in the men’s blood.

"Men over age 52 are six times more likely than a 27-year-old to have a child with Apert syndrome, so the mutation rate alone can’t account for the condition’s link to paternal age," says first author Rivka Glaser, a graduate student in the human genetics and molecular biology program at Johns Hopkins.

"Literally hundreds of millions of sperm are made in each batch, so in most cases there are still many normal sperm available," adds Jabs, also a professor of pediatrics. "Because the few mutated sperm are more likely to be used to make a baby than would be expected, the mutation must provide them some competitive advantage over their normal counterparts."

The two genetic mutations that cause most cases of Apert syndrome affect a protein called fibroblast growth-factor receptor-2 (FGFR2). The mutated versions of FGFR-2 don’t bind to its usual targets with the same affinity, perhaps contributing to the sperm’s likelihood of fertilizing an egg, the researchers suggest.

The scientists looked for the two FGFR2 mutations in sperm from two groups of men who did not have children with Apert syndrome. These controls -- 57 from a Johns Hopkins study and 76 from an ongoing study at Lawrence Livermore National Laboratory -- were asked to provide sperm and blood samples and to complete a health survey. They also analyzed sperm from 15 fathers of children with Apert syndrome.


The research was funded by the National Institutes of Health, the Environmental Protection Agency and the Department of Energy. Authors on the study are Glaser, Jabs, and Rebecca Schulman of Johns Hopkins School of Medicine; Karl Broman of the Johns Hopkins Bloomberg School of Public Health; Brenda Eskenazi of the University of California at Berkeley School of Public Health; and Andrew Wyrobek of Lawrence Livermore National Laboratory.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.hopkinsmedicine.org/craniofacial/Home/
http://www.journals.uchicago.edu/AJHG/journal/issues/v73n4/40284/brief/40284.abstract.html

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>