Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice makes first rapid, sensitive whole-blood immunoassay

23.07.2003


Innovative test based on nanoshells could provide critical info for ER doctors, others



Nanotechnology researchers at Rice University have developed a new method of testing whole blood that could allow emergency room doctors and other point-of-care health professionals to rapidly diagnose a variety of ailments, including hemorrhagic stroke, heart attack, and various infectious diseases.
The test, which is faster than existing whole-blood immunoassays, uses gold nanoshells, tiny optically active gold-coated glass particles that are so small about 700 could fit in the diameter of a human hair.

In laboratory tests at Rice, the nanoshell immunoassay was capable of detecting less than one billionth of a gram of the glycoprotein immunoglobulin G, or IgG, per milliliter of whole blood.



"To our knowledge, this is the first in situ whole-blood immunoassay to report sensitivities on this order in under 30 minutes," said Jennifer West, associate professor of bioengineering and chemical engineering.

Immunoassay technology capitalizes on the characteristic way that antibodies attach themselves to invading pathogens in the body. Antibodies are proteins produced by white blood cells. Their job is to recognize and bind to invading antigens in the body, and they do this with great specificity. Scientists and doctors have discovered numerous ways to harvest these antibodies and use them diagnostically to identify a multitude of different chemicals.

One of these diagnostic applications is the conventional immunoassay, in which a solution that a doctor wants to test, such as blood plasma, is exposed to a tray containing antibodies that bind with a specific antigen under investigation. When the antibodies bind to the antigen, the test changes color. These systems are used to identify and diagnose various conditions ranging from HIV to a heart attack.

Unfortunately, existing technologies haven´t produced a fast, reliable whole-blood immunoassay, in part because blood is so viscous and murky that it interferes with the chemical reactions in the test solution and makes it difficult to get accurate readings. Instead, clinicians must purify the blood to remove these contaminants before proceeding with the immunoassay, a time-consuming step that typically takes an hour or more.

The new nanoshell immunoassay was able to overcome these obstacles by coupling antibodies to nanoshells that absorb near-infrared light. The study was conducted by West; nanoshell inventor Naomi Halas, the Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry; and graduate students Leon Hirsch, Joe Jackson and Allen Lee. It is published in the May 15 issue of the journal Analytical Chemistry.

Similar in structure to a hard-shelled chocolate candy, nanoshells are layered colloids that consist of a core of non-conducting material -- silica in this case -- covered by a thin metallic shell. By varying the thickness of the metal shell, researchers in Halas´ group can precisely tune the color of light to which the nanoshells respond. Because near infrared light penetrates whole blood very well, it is an optimal wavelength for a whole blood immunoassay.

When the antibody-nanoshell particles are placed into a solution of blood containing the test molecule, the antibody-nanoshells bind to the test molecule, which causes slight changes the optical properties of the nanoshells. By monitoring these changes, Halas and West were able to monitor very slight concentrations of antigens in the blood, without any time-consuming sample preparation.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

Taking a spin on plasma space tornadoes with NASA observations

20.11.2017 | Physics and Astronomy

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>