Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice makes first rapid, sensitive whole-blood immunoassay

23.07.2003


Innovative test based on nanoshells could provide critical info for ER doctors, others



Nanotechnology researchers at Rice University have developed a new method of testing whole blood that could allow emergency room doctors and other point-of-care health professionals to rapidly diagnose a variety of ailments, including hemorrhagic stroke, heart attack, and various infectious diseases.
The test, which is faster than existing whole-blood immunoassays, uses gold nanoshells, tiny optically active gold-coated glass particles that are so small about 700 could fit in the diameter of a human hair.

In laboratory tests at Rice, the nanoshell immunoassay was capable of detecting less than one billionth of a gram of the glycoprotein immunoglobulin G, or IgG, per milliliter of whole blood.



"To our knowledge, this is the first in situ whole-blood immunoassay to report sensitivities on this order in under 30 minutes," said Jennifer West, associate professor of bioengineering and chemical engineering.

Immunoassay technology capitalizes on the characteristic way that antibodies attach themselves to invading pathogens in the body. Antibodies are proteins produced by white blood cells. Their job is to recognize and bind to invading antigens in the body, and they do this with great specificity. Scientists and doctors have discovered numerous ways to harvest these antibodies and use them diagnostically to identify a multitude of different chemicals.

One of these diagnostic applications is the conventional immunoassay, in which a solution that a doctor wants to test, such as blood plasma, is exposed to a tray containing antibodies that bind with a specific antigen under investigation. When the antibodies bind to the antigen, the test changes color. These systems are used to identify and diagnose various conditions ranging from HIV to a heart attack.

Unfortunately, existing technologies haven´t produced a fast, reliable whole-blood immunoassay, in part because blood is so viscous and murky that it interferes with the chemical reactions in the test solution and makes it difficult to get accurate readings. Instead, clinicians must purify the blood to remove these contaminants before proceeding with the immunoassay, a time-consuming step that typically takes an hour or more.

The new nanoshell immunoassay was able to overcome these obstacles by coupling antibodies to nanoshells that absorb near-infrared light. The study was conducted by West; nanoshell inventor Naomi Halas, the Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry; and graduate students Leon Hirsch, Joe Jackson and Allen Lee. It is published in the May 15 issue of the journal Analytical Chemistry.

Similar in structure to a hard-shelled chocolate candy, nanoshells are layered colloids that consist of a core of non-conducting material -- silica in this case -- covered by a thin metallic shell. By varying the thickness of the metal shell, researchers in Halas´ group can precisely tune the color of light to which the nanoshells respond. Because near infrared light penetrates whole blood very well, it is an optimal wavelength for a whole blood immunoassay.

When the antibody-nanoshell particles are placed into a solution of blood containing the test molecule, the antibody-nanoshells bind to the test molecule, which causes slight changes the optical properties of the nanoshells. By monitoring these changes, Halas and West were able to monitor very slight concentrations of antigens in the blood, without any time-consuming sample preparation.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>