Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rice makes first rapid, sensitive whole-blood immunoassay


Innovative test based on nanoshells could provide critical info for ER doctors, others

Nanotechnology researchers at Rice University have developed a new method of testing whole blood that could allow emergency room doctors and other point-of-care health professionals to rapidly diagnose a variety of ailments, including hemorrhagic stroke, heart attack, and various infectious diseases.
The test, which is faster than existing whole-blood immunoassays, uses gold nanoshells, tiny optically active gold-coated glass particles that are so small about 700 could fit in the diameter of a human hair.

In laboratory tests at Rice, the nanoshell immunoassay was capable of detecting less than one billionth of a gram of the glycoprotein immunoglobulin G, or IgG, per milliliter of whole blood.

"To our knowledge, this is the first in situ whole-blood immunoassay to report sensitivities on this order in under 30 minutes," said Jennifer West, associate professor of bioengineering and chemical engineering.

Immunoassay technology capitalizes on the characteristic way that antibodies attach themselves to invading pathogens in the body. Antibodies are proteins produced by white blood cells. Their job is to recognize and bind to invading antigens in the body, and they do this with great specificity. Scientists and doctors have discovered numerous ways to harvest these antibodies and use them diagnostically to identify a multitude of different chemicals.

One of these diagnostic applications is the conventional immunoassay, in which a solution that a doctor wants to test, such as blood plasma, is exposed to a tray containing antibodies that bind with a specific antigen under investigation. When the antibodies bind to the antigen, the test changes color. These systems are used to identify and diagnose various conditions ranging from HIV to a heart attack.

Unfortunately, existing technologies haven´t produced a fast, reliable whole-blood immunoassay, in part because blood is so viscous and murky that it interferes with the chemical reactions in the test solution and makes it difficult to get accurate readings. Instead, clinicians must purify the blood to remove these contaminants before proceeding with the immunoassay, a time-consuming step that typically takes an hour or more.

The new nanoshell immunoassay was able to overcome these obstacles by coupling antibodies to nanoshells that absorb near-infrared light. The study was conducted by West; nanoshell inventor Naomi Halas, the Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry; and graduate students Leon Hirsch, Joe Jackson and Allen Lee. It is published in the May 15 issue of the journal Analytical Chemistry.

Similar in structure to a hard-shelled chocolate candy, nanoshells are layered colloids that consist of a core of non-conducting material -- silica in this case -- covered by a thin metallic shell. By varying the thickness of the metal shell, researchers in Halas´ group can precisely tune the color of light to which the nanoshells respond. Because near infrared light penetrates whole blood very well, it is an optimal wavelength for a whole blood immunoassay.

When the antibody-nanoshell particles are placed into a solution of blood containing the test molecule, the antibody-nanoshells bind to the test molecule, which causes slight changes the optical properties of the nanoshells. By monitoring these changes, Halas and West were able to monitor very slight concentrations of antigens in the blood, without any time-consuming sample preparation.

Jade Boyd | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>