Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice makes first rapid, sensitive whole-blood immunoassay

23.07.2003


Innovative test based on nanoshells could provide critical info for ER doctors, others



Nanotechnology researchers at Rice University have developed a new method of testing whole blood that could allow emergency room doctors and other point-of-care health professionals to rapidly diagnose a variety of ailments, including hemorrhagic stroke, heart attack, and various infectious diseases.
The test, which is faster than existing whole-blood immunoassays, uses gold nanoshells, tiny optically active gold-coated glass particles that are so small about 700 could fit in the diameter of a human hair.

In laboratory tests at Rice, the nanoshell immunoassay was capable of detecting less than one billionth of a gram of the glycoprotein immunoglobulin G, or IgG, per milliliter of whole blood.



"To our knowledge, this is the first in situ whole-blood immunoassay to report sensitivities on this order in under 30 minutes," said Jennifer West, associate professor of bioengineering and chemical engineering.

Immunoassay technology capitalizes on the characteristic way that antibodies attach themselves to invading pathogens in the body. Antibodies are proteins produced by white blood cells. Their job is to recognize and bind to invading antigens in the body, and they do this with great specificity. Scientists and doctors have discovered numerous ways to harvest these antibodies and use them diagnostically to identify a multitude of different chemicals.

One of these diagnostic applications is the conventional immunoassay, in which a solution that a doctor wants to test, such as blood plasma, is exposed to a tray containing antibodies that bind with a specific antigen under investigation. When the antibodies bind to the antigen, the test changes color. These systems are used to identify and diagnose various conditions ranging from HIV to a heart attack.

Unfortunately, existing technologies haven´t produced a fast, reliable whole-blood immunoassay, in part because blood is so viscous and murky that it interferes with the chemical reactions in the test solution and makes it difficult to get accurate readings. Instead, clinicians must purify the blood to remove these contaminants before proceeding with the immunoassay, a time-consuming step that typically takes an hour or more.

The new nanoshell immunoassay was able to overcome these obstacles by coupling antibodies to nanoshells that absorb near-infrared light. The study was conducted by West; nanoshell inventor Naomi Halas, the Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry; and graduate students Leon Hirsch, Joe Jackson and Allen Lee. It is published in the May 15 issue of the journal Analytical Chemistry.

Similar in structure to a hard-shelled chocolate candy, nanoshells are layered colloids that consist of a core of non-conducting material -- silica in this case -- covered by a thin metallic shell. By varying the thickness of the metal shell, researchers in Halas´ group can precisely tune the color of light to which the nanoshells respond. Because near infrared light penetrates whole blood very well, it is an optimal wavelength for a whole blood immunoassay.

When the antibody-nanoshell particles are placed into a solution of blood containing the test molecule, the antibody-nanoshells bind to the test molecule, which causes slight changes the optical properties of the nanoshells. By monitoring these changes, Halas and West were able to monitor very slight concentrations of antigens in the blood, without any time-consuming sample preparation.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>