Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildlife markets and disease transmission

09.07.2003


The problem is, pigs and other animals do fly



A consortium of scientists from the New York-based Wildlife Conservation Society announced this week that one way to reduce the risks of future SARS-like diseases is to control wildlife markets. Specifically, markets selling wild animals for their meat not only threaten wildlife populations, but also present a grave threat to humans. A recent example of the problem is the suspected link between wildlife markets in China and the outbreak of SARS in humans. Other possible cases include bushmeat and Ebola outbreaks in Africa, West Nile virus and monkeypox. Even the primate origins of HIV point to a link between wildlife and human disease.

Since humans first walked upright they have eaten wildlife. But human population densities were far lower than today – well under one person per square mile in most tropical forests, for example. Animals were only hunted on a scale to support the subsistence needs of local human populations, and international trade in wildlife was negligible or absent.


In many areas around the world, traditional hunting is little changed today, where wildlife is carried for a maximum of one or two day’s walk back to the community. Consumers and animals live in similar ecosystems and have been co-existing for many generations. Cross-species diseases do still occur in these remote rural towns, but some resistance to local diseases has developed over the ages and many local, religious, and cultural rules on the handling and consumption of animals developed to protect people from these illnesses.

But in today’s global marketplace, wildlife is just another commodity. Wildlife for food markets and the pet trade are often transported over enormous distances. For example, animals found in markets in Guangzhou, Guangdong Province, China include soft-shelled turtles captured in Sumatra (1,900 miles away), pangolins from Vietnam (930 miles) and Thailand (1,100 miles), pythons from the Mandalay area, Myanmar (1,950 miles?), and red-eared sliders from Florida, USA (9,000 miles). Even "local" wildlife might include animals from forested southern China around Kunming, 800 miles distant.

Daily Possibility of Disease Spillover

The result is a dangerous integration of circumstances, with animals and consumers from different ecosystems coming into contact. The lack of resistance to new pathogens makes humans and animals fertile, uncontrolled laboratories for viruses and bacteria to adapt and rapidly mutate. Further, the staggering numbers of animals and people in contact change one-in-a-million odds of a disease spillover into almost a daily possibility. Even under the most hygienic conditions, this pool of viruses, bacteria, and other pathogens creates optimal conditions for diseases to multiply rapidly and jump between species to exploit new potential hosts -- something the most "successful" diseases do all too well. Under this scenario, two problems are created. First is the high risk of new diseases spreading into human populations. Second is that this can create a "fear factor" amongst people – their concern that wildlife is unhealthy might cause them to try to remove the threat by killing the wildlife. Shooting flying foxes was proposed in Southeast Asia when they were thought to be carrying nipa virus, even though the link has not been definitively proven and the disease is rarely found in flying foxes. Large-scale killing of sparrows and crows during the Great Leap Forward in China in the late 1950’s because they were thought to be pests led to failed rice crops and massive famine because the birds had really been helping to control actual insect pests.

In almost all cases, eradication schemes are not cost efficient or effective means to reduce disease spread when compared to health education, sanitation, and controlling animal movement. Moreover, eradication schemes do not address the fundamental problem of our creating conditions which maximize opportunities for disease build-up and cross-species transmission. Much research is still needed on the links between viruses in different species and human disease, and means of transmission between the two. But we already know enough to minimize the risks to humans – if we reduce or stop live animals being transported over long distances into markets for food, medicinal uses or for the pet trade, we are not only helping to conserve those species in the wild, but we are also protecting ourselves from the risks of new, virulent and potentially fatal diseases.

Stephen Sautner | EurekAlert!
Further information:
http://www.wcs.org/

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>