Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinctive Genetic Program Guides Breast Cancer’s Deadly Spread

26.06.2003


Researchers have peered inside breast cancer’s toolbox and identified a set of rogue genes that accelerates the spread of cancer from its primary site in the breast to a secondary location in bone marrow. The genes identified by the scientists are distinct from those that spawn the initial tumor, which invites speculation about whether different cancers bear unique “gene expression signatures” that increase the probability that a cancer will spread in a process called metastasis.



Metastasis occurs when cells from a primary tumor break off and invade another organ. It is the deadliest transformation that a cancer can undergo, and therefore researchers have been looking for specific genes that propel metastasis. If they can identify distinctive metastatic gene programs for different cancers, it may be possible to slow or halt metastases by targeting the proteins produced by those genes.

In the June 2003 issue of the journal Cancer Cell, researchers led by Howard Hughes Medical Institute investigator Joan Massagué at Memorial Sloan-Kettering Cancer Center, published a report showing that breast cancer metastasis to bone is mediated by a specific set of genes. Massagué collaborated on the studies with colleagues from the University of Texas Health Science Center.


“There has been a raging controversy in the cancer research field between two hypotheses,” said Massagué. “One is the classical view that says that only a few cells in a tumor acquire alterations that render them increasingly metastatic. And of the millions of tumor cells that enter the circulation, the patient only gets a handful of metastases from these cells.

“By contrast, there has been recent evidence that primary tumors that go on to develop metastases already possess a `poor prognosis signature’ involving a group of genes whose high level of activity is indicative of the potential for metastasis,” he said.

To attempt to distinguish between these two models, Massagué and his colleagues used a precise technique to isolate specific cells from cultures of cells from a breast cancer patient who had died from metastatic disease. The researchers explored whether some of these types of isolated cells were better than others at metastasizing to bone - a major site of breast-cancer metastasis.

“Indeed, we did find that certain of these cells were more adept at metastasizing to bone when injected into mice,” said Massagué. “And when we analyzed the gene expression in these cells, we found a set of genes whose activity was specifically associated with this enhanced metastatic ability.”

These overexpressed genes enabled tumor cells to home in on bone, to trigger growth of blood vessels, and to recruit bone cells in the metastatic process, said Massagué. Furthermore, he said, the bone-metastasis genes were distinct from those in cells that metastasize to the adrenal gland.

“We also asked the question of whether these bone-metastasis genes were among the genes previously identified as part of the `poor prognosis signature,’ and the answer was zero, not a one,” said Massagué.

“This means that the metastatic gene signature defines and forms a violent society — a large group of cells in a tumor that are competent to become metastatic cells.” However, said Massagué, discovery of these metastatic genes does not invalidate the classical model that tumor cells require additional genetic mutations to metastasize.

“In and of themselves, these genes may not be mediators of metastases,” he said. “Our finding is that above and beyond the genetic signature that has created this tumor, there is a toolbox of overexpressed genes that the cancer cell will need; that will be the mediators for the cell to thrive in the bone marrow. So the poor-prognosis signature is bad news, but that signature is not enough.”

Massagué and his colleagues conducted two types of experiments to demonstrate that the metastatic-related genes were, indeed, causative in triggering cancer spread to the bone. In one series, they engineered poorly metastatic cells to overexpress different numbers of the genes they had identified as being necessary for metastasis to bone. They found that cells in which more of the genes were overexpressed showed more aggressive metastasis in mice.

In the second set of experiments, the researchers analyzed existing cultured breast cancer cells to determine which ones had more of the overexpressed genes they had found associated with metastasis. When they injected those cells into mice, the researchers found that that the more of the mutant genes the cells possessed, the more aggressively metastatic they were.

Massagué said the findings indicate “we have basically identified a Darwinian process of selection at work. These cells just happen to accumulate the `winning combination’ of hyperactive genes that enables them to thrive in bone marrow. And once the traveling tumor cells pass through bone marrow, they are incredibly successful at attaching to and invading bone.”

According to Massagué, additional studies will be required to understand whether distinct collections of “metastatic genes” exist in other metastatic tumors, including breast cancers.

While the presence of these telltale proteins in the blood of cancer patients could give clues to the specific identities of the cancers, “I cannot be sure that such analyses will have major value in diagnosis,” said Massagué. “Imaging technologies for metastases are already very effective at detecting them. Nevertheless, some of these factors might be expressed at such high level by micro-metastases that they might become a first line of diagnosis.

“The much more conceivable possibility is that we could determine precisely what particular combination of genes is driving a patient’s metastasis. And with that profile, we might be able to use specific blockers to attack and silence enough of these proteins to render the `metastatic toolbox’ ineffective, and to ameliorate metastatic growth.”

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/massague.html

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>