Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinctive Genetic Program Guides Breast Cancer’s Deadly Spread

26.06.2003


Researchers have peered inside breast cancer’s toolbox and identified a set of rogue genes that accelerates the spread of cancer from its primary site in the breast to a secondary location in bone marrow. The genes identified by the scientists are distinct from those that spawn the initial tumor, which invites speculation about whether different cancers bear unique “gene expression signatures” that increase the probability that a cancer will spread in a process called metastasis.



Metastasis occurs when cells from a primary tumor break off and invade another organ. It is the deadliest transformation that a cancer can undergo, and therefore researchers have been looking for specific genes that propel metastasis. If they can identify distinctive metastatic gene programs for different cancers, it may be possible to slow or halt metastases by targeting the proteins produced by those genes.

In the June 2003 issue of the journal Cancer Cell, researchers led by Howard Hughes Medical Institute investigator Joan Massagué at Memorial Sloan-Kettering Cancer Center, published a report showing that breast cancer metastasis to bone is mediated by a specific set of genes. Massagué collaborated on the studies with colleagues from the University of Texas Health Science Center.


“There has been a raging controversy in the cancer research field between two hypotheses,” said Massagué. “One is the classical view that says that only a few cells in a tumor acquire alterations that render them increasingly metastatic. And of the millions of tumor cells that enter the circulation, the patient only gets a handful of metastases from these cells.

“By contrast, there has been recent evidence that primary tumors that go on to develop metastases already possess a `poor prognosis signature’ involving a group of genes whose high level of activity is indicative of the potential for metastasis,” he said.

To attempt to distinguish between these two models, Massagué and his colleagues used a precise technique to isolate specific cells from cultures of cells from a breast cancer patient who had died from metastatic disease. The researchers explored whether some of these types of isolated cells were better than others at metastasizing to bone - a major site of breast-cancer metastasis.

“Indeed, we did find that certain of these cells were more adept at metastasizing to bone when injected into mice,” said Massagué. “And when we analyzed the gene expression in these cells, we found a set of genes whose activity was specifically associated with this enhanced metastatic ability.”

These overexpressed genes enabled tumor cells to home in on bone, to trigger growth of blood vessels, and to recruit bone cells in the metastatic process, said Massagué. Furthermore, he said, the bone-metastasis genes were distinct from those in cells that metastasize to the adrenal gland.

“We also asked the question of whether these bone-metastasis genes were among the genes previously identified as part of the `poor prognosis signature,’ and the answer was zero, not a one,” said Massagué.

“This means that the metastatic gene signature defines and forms a violent society — a large group of cells in a tumor that are competent to become metastatic cells.” However, said Massagué, discovery of these metastatic genes does not invalidate the classical model that tumor cells require additional genetic mutations to metastasize.

“In and of themselves, these genes may not be mediators of metastases,” he said. “Our finding is that above and beyond the genetic signature that has created this tumor, there is a toolbox of overexpressed genes that the cancer cell will need; that will be the mediators for the cell to thrive in the bone marrow. So the poor-prognosis signature is bad news, but that signature is not enough.”

Massagué and his colleagues conducted two types of experiments to demonstrate that the metastatic-related genes were, indeed, causative in triggering cancer spread to the bone. In one series, they engineered poorly metastatic cells to overexpress different numbers of the genes they had identified as being necessary for metastasis to bone. They found that cells in which more of the genes were overexpressed showed more aggressive metastasis in mice.

In the second set of experiments, the researchers analyzed existing cultured breast cancer cells to determine which ones had more of the overexpressed genes they had found associated with metastasis. When they injected those cells into mice, the researchers found that that the more of the mutant genes the cells possessed, the more aggressively metastatic they were.

Massagué said the findings indicate “we have basically identified a Darwinian process of selection at work. These cells just happen to accumulate the `winning combination’ of hyperactive genes that enables them to thrive in bone marrow. And once the traveling tumor cells pass through bone marrow, they are incredibly successful at attaching to and invading bone.”

According to Massagué, additional studies will be required to understand whether distinct collections of “metastatic genes” exist in other metastatic tumors, including breast cancers.

While the presence of these telltale proteins in the blood of cancer patients could give clues to the specific identities of the cancers, “I cannot be sure that such analyses will have major value in diagnosis,” said Massagué. “Imaging technologies for metastases are already very effective at detecting them. Nevertheless, some of these factors might be expressed at such high level by micro-metastases that they might become a first line of diagnosis.

“The much more conceivable possibility is that we could determine precisely what particular combination of genes is driving a patient’s metastasis. And with that profile, we might be able to use specific blockers to attack and silence enough of these proteins to render the `metastatic toolbox’ ineffective, and to ameliorate metastatic growth.”

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/massague.html

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>