Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Nile virus warning system

20.06.2003


In combating West Nile virus, information could be the ultimate repellant. In an effort to develop an early-warning system for potential West Nile virus outbreaks, Cornell University’s Northeast Regional Climate Center (NRCC) and the Department of Entomology will spend this summer collecting climate data in areas where disease-carrying mosquitoes are found.



The U.S. government-funded research, it is hoped, will result in the first Web-based, degree-day calculator that warns public health officials when, where and under which conditions infectious mosquitoes can either thrive or die. The information is expected to be on line by next summer.

"Scientists, whether they are climatologists or medical entomologists, have never fully examined the relationship between climate and the proliferation of the mosquitoes that carry West Nile virus," says Arthur T. DeGaetano, Cornell associate professor of climatology and director of the NRCC, is one of the principal investigators on the project. "Cornell’s College of Agriculture and Life Sciences is unique in that collaborations like this are very possible. Interaction between climatologists and medical entomologists can be at a level where information -- once it is gathered and processed -- can be readily employed in vector management schemes," he says.


The research, funded by the National Oceanic and Atmospheric Administration, will occur in four stages. First, climatologists and entomologists will gather climate data and synchronize this with mosquito habitat observations. These data then will be related to mosquito-count information through statistical analysis for mapping and graphing. From this information, indices will be developed for moisture surpluses, degree day-based mosquito development and killing freezes. Finally, all this data will be put on the Web for public health officials’ use.

Mosquitoes develop in microhabitats, according to Laura Harrington, Cornell assistant professor of entomology and a co-principal investigator on the project. The correlation of climate data with microhabitat information will provide scientific clues to how mosquito populations develop and age. Older mosquitoes are the carriers of West Nile virus, becoming contaminated when they feed on infected "reservoir" animals such as birds, and undergo an incubation period of the virus that can last 7-14 days. During subsequent blood meals after this incubation period, the mosquitoes inject the virus into humans and animals, where it can multiply and sometimes cause illness. It is outdoor temperatures that determine both the rate at which the virus replicates and the rate at which mosquitoes age.

While mosquitoes can live as long as three or four months in a laboratory, their life span in the wild is much shorter. Thanks to predators and pathogens, the longest a mosquito can live is probably three to four weeks, says Harrington. During the height of summer heat, a mosquito can age and become a full adult within seven to nine days.

The study also will gather information on early establishment and climate-influenced development of mosquitoes carrying West Nile virus in specialized habitats such as discarded tires and other types of containers that tend to be located close to human dwellings.

Catherine Westbrook, a Cornell graduate student in entomology, and Renee Anderson, a medical entomology extension associate, will monitor mosquito microhabitats in several Northeast locations this summer.

Contact: Blaine P. Friedlander Jr., bpf2@cornell.edu

Blaine P. Friedlander Jr. | EurekAlert!
Further information:
http://www.news.cornell.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>