Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Nile virus warning system

20.06.2003


In combating West Nile virus, information could be the ultimate repellant. In an effort to develop an early-warning system for potential West Nile virus outbreaks, Cornell University’s Northeast Regional Climate Center (NRCC) and the Department of Entomology will spend this summer collecting climate data in areas where disease-carrying mosquitoes are found.



The U.S. government-funded research, it is hoped, will result in the first Web-based, degree-day calculator that warns public health officials when, where and under which conditions infectious mosquitoes can either thrive or die. The information is expected to be on line by next summer.

"Scientists, whether they are climatologists or medical entomologists, have never fully examined the relationship between climate and the proliferation of the mosquitoes that carry West Nile virus," says Arthur T. DeGaetano, Cornell associate professor of climatology and director of the NRCC, is one of the principal investigators on the project. "Cornell’s College of Agriculture and Life Sciences is unique in that collaborations like this are very possible. Interaction between climatologists and medical entomologists can be at a level where information -- once it is gathered and processed -- can be readily employed in vector management schemes," he says.


The research, funded by the National Oceanic and Atmospheric Administration, will occur in four stages. First, climatologists and entomologists will gather climate data and synchronize this with mosquito habitat observations. These data then will be related to mosquito-count information through statistical analysis for mapping and graphing. From this information, indices will be developed for moisture surpluses, degree day-based mosquito development and killing freezes. Finally, all this data will be put on the Web for public health officials’ use.

Mosquitoes develop in microhabitats, according to Laura Harrington, Cornell assistant professor of entomology and a co-principal investigator on the project. The correlation of climate data with microhabitat information will provide scientific clues to how mosquito populations develop and age. Older mosquitoes are the carriers of West Nile virus, becoming contaminated when they feed on infected "reservoir" animals such as birds, and undergo an incubation period of the virus that can last 7-14 days. During subsequent blood meals after this incubation period, the mosquitoes inject the virus into humans and animals, where it can multiply and sometimes cause illness. It is outdoor temperatures that determine both the rate at which the virus replicates and the rate at which mosquitoes age.

While mosquitoes can live as long as three or four months in a laboratory, their life span in the wild is much shorter. Thanks to predators and pathogens, the longest a mosquito can live is probably three to four weeks, says Harrington. During the height of summer heat, a mosquito can age and become a full adult within seven to nine days.

The study also will gather information on early establishment and climate-influenced development of mosquitoes carrying West Nile virus in specialized habitats such as discarded tires and other types of containers that tend to be located close to human dwellings.

Catherine Westbrook, a Cornell graduate student in entomology, and Renee Anderson, a medical entomology extension associate, will monitor mosquito microhabitats in several Northeast locations this summer.

Contact: Blaine P. Friedlander Jr., bpf2@cornell.edu

Blaine P. Friedlander Jr. | EurekAlert!
Further information:
http://www.news.cornell.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>