Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term survival after breast cancer diagnosis

02.06.2003


Most breast cancer patients with more than 10 nodes that are affected by the cancer have a poor prognosis, yet some survive long-term. Physicians now believe that certain genes in the breast cancer tissue, removed at diagnosis, can help them predict which patients will survive.



With this information, doctors can recommend the most appropriate therapy for an individual patient, for example sparing a woman with a poor prognosis the rigors that accompany aggressive chemotherapy, and enabling her to receive novel treatments that might work, according to Dr. Melody Cobleigh, oncologist, professor of medicine and director of the Comprehensive Breast Center at Rush-Presbyterian-St. Luke’s Medical Center in Chicago.

Cobleigh presented her research results on May 31 at the American Society of Clinical Oncology Annual Meeting in Chicago. Until now, such studies could only be performed on recently biopsied tissue that would then be frozen for preservation. Routine handling of cancer specimens does not involve freezing. Cobleigh and colleagues at Genomic Health examined the breast cancer tissue of 79 patients who had been treated at Rush between 1979 and 1999 and whose tissues had been processed in the usual manner (formalin-fixed and paraffin-embedded). The patients had been followed for a median of 15 years.


Expression of 185 cancer-related genes was assessed. The genes chosen were based on previous reports on frozen tissues. Cobleigh determined that those women whose tumors expressed excess amounts of some genes, e.g. TP53BP2, PR and Bcl2, were more likely to be free of cancer in their vital organs. She also found that women whose tumors expressed too much of other genes, e.g. GRB7, CTSL and DIABLO experienced a worse outcome. Cobleigh reported that even among women with 10 or more positive nodes, the gene expression profile could predict long-term survival.

"Until now, the only indications we have had of long-term prognosis were tumor size and the number of involved nodes," Cobleigh said. "This technology will allow us to tailor a prognosis to the individual patient, using information from thousands of genes."

She cautioned, however, that her research is a first step. "These findings must be confirmed in independent data sets," she said. She pointed out, however, that this is already underway, using material from tumor banks owned and managed by international cooperative groups, such as the National Surgical Adjuvant Breast and Bowel Project (NSABP), which is a clinical trials cooperative group supported by the National Cancer Institute (NCI). If results are validated, the test could become commercially available within a year.

Cobleigh, who was an investigator in the 1990s on the clinical trials to test the monoclonal antibody Herceptin, suggested that another offshoot of this work is to examine the tumor for expression of genes that will predict responsiveness to specific therapies, such as Herceptin.

Tumor tissue for this research was generated from the Bill Shorey Database of Breast Tumors, named after Dr. Bill Shorey, a breast surgeon who worked at Rush for more than 30 years. The Shorey Database was computerized by Dr. David Roseman, another surgeon who worked at Rush for over 30 years, and Michigan physician Dr. Craig Silverton.


Rush-Presbyterian-St. Luke’s Medical Center includes the 824-bed Presbyterian-St. Luke’s Hospital; 110-bed Johnston R. Bowman Health Center; Rush University (Rush Medical College, College of Nursing, College of Health Sciences and the Graduate College).

Chris Martin | EurekAlert!
Further information:
http://www.rush.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>