Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term survival after breast cancer diagnosis

02.06.2003


Most breast cancer patients with more than 10 nodes that are affected by the cancer have a poor prognosis, yet some survive long-term. Physicians now believe that certain genes in the breast cancer tissue, removed at diagnosis, can help them predict which patients will survive.



With this information, doctors can recommend the most appropriate therapy for an individual patient, for example sparing a woman with a poor prognosis the rigors that accompany aggressive chemotherapy, and enabling her to receive novel treatments that might work, according to Dr. Melody Cobleigh, oncologist, professor of medicine and director of the Comprehensive Breast Center at Rush-Presbyterian-St. Luke’s Medical Center in Chicago.

Cobleigh presented her research results on May 31 at the American Society of Clinical Oncology Annual Meeting in Chicago. Until now, such studies could only be performed on recently biopsied tissue that would then be frozen for preservation. Routine handling of cancer specimens does not involve freezing. Cobleigh and colleagues at Genomic Health examined the breast cancer tissue of 79 patients who had been treated at Rush between 1979 and 1999 and whose tissues had been processed in the usual manner (formalin-fixed and paraffin-embedded). The patients had been followed for a median of 15 years.


Expression of 185 cancer-related genes was assessed. The genes chosen were based on previous reports on frozen tissues. Cobleigh determined that those women whose tumors expressed excess amounts of some genes, e.g. TP53BP2, PR and Bcl2, were more likely to be free of cancer in their vital organs. She also found that women whose tumors expressed too much of other genes, e.g. GRB7, CTSL and DIABLO experienced a worse outcome. Cobleigh reported that even among women with 10 or more positive nodes, the gene expression profile could predict long-term survival.

"Until now, the only indications we have had of long-term prognosis were tumor size and the number of involved nodes," Cobleigh said. "This technology will allow us to tailor a prognosis to the individual patient, using information from thousands of genes."

She cautioned, however, that her research is a first step. "These findings must be confirmed in independent data sets," she said. She pointed out, however, that this is already underway, using material from tumor banks owned and managed by international cooperative groups, such as the National Surgical Adjuvant Breast and Bowel Project (NSABP), which is a clinical trials cooperative group supported by the National Cancer Institute (NCI). If results are validated, the test could become commercially available within a year.

Cobleigh, who was an investigator in the 1990s on the clinical trials to test the monoclonal antibody Herceptin, suggested that another offshoot of this work is to examine the tumor for expression of genes that will predict responsiveness to specific therapies, such as Herceptin.

Tumor tissue for this research was generated from the Bill Shorey Database of Breast Tumors, named after Dr. Bill Shorey, a breast surgeon who worked at Rush for more than 30 years. The Shorey Database was computerized by Dr. David Roseman, another surgeon who worked at Rush for over 30 years, and Michigan physician Dr. Craig Silverton.


Rush-Presbyterian-St. Luke’s Medical Center includes the 824-bed Presbyterian-St. Luke’s Hospital; 110-bed Johnston R. Bowman Health Center; Rush University (Rush Medical College, College of Nursing, College of Health Sciences and the Graduate College).

Chris Martin | EurekAlert!
Further information:
http://www.rush.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>