Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting through the matrix

19.05.2003


MGH research suggests strategies for improving drug delivery to cancer cells



The best cancer drugs in the world are not much good if they cannot get to tumor cells. That problem has been challenging cancer physicians and researchers for years because the physical structure of many tumors can prevent anticancer agents from reaching their targets. In a study appearing in the June issue of Nature Medicine, researchers from Massachusetts General Hospital (MGH) describe a new technique for assessing the permeability of tumors and a promising new way of improving tumors’ accessibility to drugs. The report is receiving advance online publication on the journal’s website at http://www.nature.com/nm/.

"We’ve known for a long time that many cancer drugs work very well on cells, but not so well in patients," says Rakesh Jain, PhD, director of the Steele Laboratory for Tumor Biology at MGH, senior author of the study. "As we have improved the understanding of tumor physiology, we have found that a significant portion of a tumor is made up of an extracellular matrix that acts as a barrier, keeping drugs away from tumor cells."


This matrix is largely made up of the connective tissue collagen. To determine the structure and content of collagen in different tumor types and to assess its effect on a tumor’s permeability, Jain’s team used a new imaging technique called second-harmonic generation (SHG), a non-invasive way of measuring an optical signal released by certain molecular structures. The researchers first showed that SHG can distinguish among types of connective tissue molecules and can specifically image the structure and density of collagen fibers.

By imaging tumors that had been implanted in mice, Jain’s team was able to produce high-definition 3-D images that revealed the amount and form of collagen. Studying three types of tumors known to have different relative collagen contents, they showed that SHG could accurately measure collagen levels that correlated with measurements of tumor permeability. This result suggests that SHG could allow analysis of the structure and content of a tumor’s collagen to help with treatment planning.

To test whether SHG could measure collagen modification, the researchers first applied the enzyme collagenase, which breaks down collagen, directly to mouse tumors. Images taken after collagenase application showed significant changes in the SHG images. However, because collagen is an important part of the body’s overall structure, collagenase would not be a useful treatment adjunct since its effect could spread far beyond the tumor itself.

In their search for an agent to selectively break down tumor-matrix collagen, the research team turned to a hormone called relaxin. Naturally produced in pregnant females, relaxin increases production of enzymes associated with dilation of the cervix and other processes needed for birth preparation. Clinical trials for other potential uses of relaxin have found only minor side effects in humans.

The researchers used intravenous pumps to deliver relaxin into the bloodstream of mice with implanted human tumors and then used SHG to image the tumors over a 12-day period. They also imaged the tumors of a control group that did not receive relaxin. While the amount of collagen in the relaxin-treated tumors was similar to that seen in the control group at the end of the study period, in the relaxin-treated mice the collagen fibers had broken down and were measurably shorter. When the researchers used probe molecules to measure the tumors’ permeability, the results indicated that the relaxin-treated matrix tissue was looser and less of an obstacle to penetration.

"We have already started animal studies to measure whether relaxin can improve actual response to chemotherapy drugs," says Jain, who is A.W. Cook Professor of Tumor Biology at Harvard Medical School. "If those results are positive, the fact that relaxin is so safe means we could move relatively quickly into human clinical trials."

A key collaborator in this research is Brian Seed, PhD, of the MGH Department of Molecular Biology. Other authors of the report are Edward Brown, PhD, of MGH and Trevor McKee, BSc, of Massachusetts Institute of Technology, co-first authors; Emmanuelle diTomaso, PhD, and Yves Boucher, PhD, also of MGH; and Alain Pluen, PhD, of the University of Manchester in the United Kingdom. The research was supported by grants from the National Cancer Institute.


###
Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital formed Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.


Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>