Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical in Broccoli Blocks Growth of Prostate Cancer Cells, New Study Shows

16.05.2003


Those seeking yet another reason to eat their veggies, take note. Researchers at the University of California, Berkeley, have found that a chemical produced when digesting such greens as broccoli and kale can stifle the growth of human prostate cancer cells.


Research shows that a chemical derived from cruciferous vegetables like broccoli could be effective against the growth of prostate cancer cells.



The findings show that 3,3’-diindolylmethane (DIM), which is obtained by eating cruciferous vegetables in the Brassica genus, acts as a powerful anti-androgen that inhibits the proliferation of human prostate cancer cells in culture tests.
Research shows that a chemical derived from cruciferous vegetables like broccoli could be effective against the growth of prostate cancer cells.

"As far as we know, this is the first plant-derived chemical discovered that acts as an anti-androgen," said Leonard Bjeldanes, professor and chair of nutritional sciences and toxicology at UC Berkeley’s College of Natural Resources and principal investigator of the study. "This is of considerable interest in the development of therapeutics and preventive agents for prostate cancer."



Vegetables such as broccoli, Brussels sprouts, kale and cauliflower are rich sources of indole-3-carbinol (I3C), which the body converts into DIM during digestion. Over the years, Bjeldanes has been researching the anti-cancer properties of dietary indoles with co-author Gary Firestone, UC Berkeley professor of molecular and cell biology.

The new study will be published in the June 6 issue of the Journal of Biological Chemistry, but is now available online.

Androgen is an important hormone for the normal development and function of the prostate, but it also plays a key role in the early stages of prostate cancer, which is typically treated with anti-androgen drugs.

In most cases of prostate cancer, the cancer cells develop resistance to androgen and grow independently of the hormone in later stages of the disease.

In the new study, the researchers conducted a series of tests comparing the effects of DIM on androgen-dependent human prostate cancer cells as well as on their androgen-independent counterparts.

They found that androgen-dependent cancer cells treated with a solution of DIM grew 70 percent less than the same type of cancer cells that had been left untreated. The same solution had no effect on the growth of androgen-independent cells, pointing to androgen inhibition as the key mechanism by which the DIM is acting.

This was confirmed with further tests showing that DIM inhibits the actions of dihydrotestosterone (DHT), the primary androgen involved in prostate cancer. DHT stimulates the expression of prostate specific antigen (PSA), which acts as a growth factor for prostate cancer. When androgen-dependent cells were treated with DIM, the researchers found a drop in the level of PSA.

"There are lots of things that can stop growth, but the fact that DIM decreases the expression of PSA shows that it is functioning at a gene expression level," said Bjeldanes.

Comparisons of the molecular conformation of DIM show that it is similar to Casodex, a synthetic anti-androgen on the market. "DIM works by binding to the same receptor that DHT uses, so it’s essentially blocking the androgen from triggering the growth of the cancer cells," said Hien Le, lead author of the study and a former graduate student in Bjeldanes’ lab.

"DIM is chemically different than Casodex, but it behaves similarly in how it blocks the effects of androgen," said Le, who received her PhD in molecular and biochemical nutrition in 2002.

These latest findings appear to add new burnish for this class of chemicals that has already shown promise in prior studies as a therapeutic agent for breast and endometrial cancer. For instance, a 1998 study by Bjeldanes and Firestone showed that I3C keeps breast cancer cells from duplicating.

"We are investigating the potential use of indoles in combination with current anti-cancer drugs on the market," said Firestone. "The advantage of combination therapy is that you can back off on the dose of a single agent and thereby reduce potential side effects."

Prostate cancer is the second leading cause of cancer deaths in American men. One in 10 men in the United States will develop signs of prostate cancer in his life, and more than 100,000 new cases are reported each year.

Le pointed out that the incidence of prostate cancer among men in Asia - where consumption of vegetables is higher - is significantly lower than that for men in the United States. However, the risk for Asian immigrants rises to levels comparable to American men the longer they stay in the United States, suggesting that factors such as diet and lifestyle play a role in the development of prostate cancer.

"There are already plenty of health reasons for consuming more vegetables such as broccoli," said Le. "This study suggests that there are even more benefits to a diet rich in these phytochemicals when it comes to preventing prostate cancer."

The study was also co-authored by Charlene Schaldach, a former PhD student in the Bjeldanes lab.

The research is supported by the California Cancer Research Project and the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

Sarah Yang | UC Berkeley News
Further information:
http://www.berkeley.edu/news/media/releases/2003/05/12_Cancer.shtml

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>