Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical in Broccoli Blocks Growth of Prostate Cancer Cells, New Study Shows

16.05.2003


Those seeking yet another reason to eat their veggies, take note. Researchers at the University of California, Berkeley, have found that a chemical produced when digesting such greens as broccoli and kale can stifle the growth of human prostate cancer cells.


Research shows that a chemical derived from cruciferous vegetables like broccoli could be effective against the growth of prostate cancer cells.



The findings show that 3,3’-diindolylmethane (DIM), which is obtained by eating cruciferous vegetables in the Brassica genus, acts as a powerful anti-androgen that inhibits the proliferation of human prostate cancer cells in culture tests.
Research shows that a chemical derived from cruciferous vegetables like broccoli could be effective against the growth of prostate cancer cells.

"As far as we know, this is the first plant-derived chemical discovered that acts as an anti-androgen," said Leonard Bjeldanes, professor and chair of nutritional sciences and toxicology at UC Berkeley’s College of Natural Resources and principal investigator of the study. "This is of considerable interest in the development of therapeutics and preventive agents for prostate cancer."



Vegetables such as broccoli, Brussels sprouts, kale and cauliflower are rich sources of indole-3-carbinol (I3C), which the body converts into DIM during digestion. Over the years, Bjeldanes has been researching the anti-cancer properties of dietary indoles with co-author Gary Firestone, UC Berkeley professor of molecular and cell biology.

The new study will be published in the June 6 issue of the Journal of Biological Chemistry, but is now available online.

Androgen is an important hormone for the normal development and function of the prostate, but it also plays a key role in the early stages of prostate cancer, which is typically treated with anti-androgen drugs.

In most cases of prostate cancer, the cancer cells develop resistance to androgen and grow independently of the hormone in later stages of the disease.

In the new study, the researchers conducted a series of tests comparing the effects of DIM on androgen-dependent human prostate cancer cells as well as on their androgen-independent counterparts.

They found that androgen-dependent cancer cells treated with a solution of DIM grew 70 percent less than the same type of cancer cells that had been left untreated. The same solution had no effect on the growth of androgen-independent cells, pointing to androgen inhibition as the key mechanism by which the DIM is acting.

This was confirmed with further tests showing that DIM inhibits the actions of dihydrotestosterone (DHT), the primary androgen involved in prostate cancer. DHT stimulates the expression of prostate specific antigen (PSA), which acts as a growth factor for prostate cancer. When androgen-dependent cells were treated with DIM, the researchers found a drop in the level of PSA.

"There are lots of things that can stop growth, but the fact that DIM decreases the expression of PSA shows that it is functioning at a gene expression level," said Bjeldanes.

Comparisons of the molecular conformation of DIM show that it is similar to Casodex, a synthetic anti-androgen on the market. "DIM works by binding to the same receptor that DHT uses, so it’s essentially blocking the androgen from triggering the growth of the cancer cells," said Hien Le, lead author of the study and a former graduate student in Bjeldanes’ lab.

"DIM is chemically different than Casodex, but it behaves similarly in how it blocks the effects of androgen," said Le, who received her PhD in molecular and biochemical nutrition in 2002.

These latest findings appear to add new burnish for this class of chemicals that has already shown promise in prior studies as a therapeutic agent for breast and endometrial cancer. For instance, a 1998 study by Bjeldanes and Firestone showed that I3C keeps breast cancer cells from duplicating.

"We are investigating the potential use of indoles in combination with current anti-cancer drugs on the market," said Firestone. "The advantage of combination therapy is that you can back off on the dose of a single agent and thereby reduce potential side effects."

Prostate cancer is the second leading cause of cancer deaths in American men. One in 10 men in the United States will develop signs of prostate cancer in his life, and more than 100,000 new cases are reported each year.

Le pointed out that the incidence of prostate cancer among men in Asia - where consumption of vegetables is higher - is significantly lower than that for men in the United States. However, the risk for Asian immigrants rises to levels comparable to American men the longer they stay in the United States, suggesting that factors such as diet and lifestyle play a role in the development of prostate cancer.

"There are already plenty of health reasons for consuming more vegetables such as broccoli," said Le. "This study suggests that there are even more benefits to a diet rich in these phytochemicals when it comes to preventing prostate cancer."

The study was also co-authored by Charlene Schaldach, a former PhD student in the Bjeldanes lab.

The research is supported by the California Cancer Research Project and the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

Sarah Yang | UC Berkeley News
Further information:
http://www.berkeley.edu/news/media/releases/2003/05/12_Cancer.shtml

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>