Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Test Enables Specialists to Predict Response to Therapy that Makes Poor Donor Matches Compatible

14.05.2003

A year-and-a-half after graduating from college in 1999, the last thing that Steve Smith, now 25, expected was for his kidneys to fail. Although the Nashville resident had always been active and healthy and had no family history of kidney disease, shortly after moving to Los Angeles, he began experiencing what he describes as "strange symptoms" that he thought might be associated with mononucleosis. When he went to the doctor, he learned that his kidneys had failed.

He moved back to Nashville and received his first kidney transplant in May, 2000, but his body developed high antibodies and rejected the organ seven months later. Worse still, because of the high antibodies, it was unlikely that doctors would be able to find another match for him as his body would very likely see another donor kidney as a foreign intruder and reject it.

However, neither Smith nor his physicians were willing to give up. His doctors had heard of an innovative kidney transplant therapy that was developed at Cedars-Sinai Medical Center in Los Angeles. They told Smith about it, and he went online to do additional research. He learned that the therapy, known as intravenous immunoglobulin (IVIG) makes kidney transplantation possible between donors and recipients who previously would have been considered poor matches. Smith learned that a new test could help determine which patients were most likely to benefit.

IVIG therapy, which has been used for several years for other diseases, was adapted for use in the field of transplantation by researchers led by Stanley C. Jordan, M.D., medical director of Cedars-Sinai’s Kidney Transplant Program, director of Pediatric Nephrology and Transplant Immunology, and professor of pediatrics at the University of California, Los Angeles. In September, 2002, Smith traveled to Los Angeles where he was seen by Dr. Jordan.

After successfully undergoing the new test to determine whether the IVIG therapy would prove effective for Smith, his donor-friend also flew to Los Angeles for additional testing. The results showed that the therapy would likely be effective in Smith’s case, so the transplant was scheduled for a couple of weeks later.

Prior to the transplant, Smith received two, four-hour treatments of IVIG therapy - an intravenous drip while he was on dialysis. About a month after his transplant, he received a final treatment with IVIG.

"I feel good!" he says now. "The blood test scores are great. I just took my donor on a cruise and I’m trying to get my life back on track."

Just a few years ago, Smith would have been facing a lifetime of kidney dialysis and little hope for a transplant. Thanks to these new medical advances, though, he has moved back to Los Angeles to resume his career in the entertainment industry.

Coming at a time when the waiting list for cadaveric kidneys is predicted to climb to 100,000 patients by 2006 and 150,000 by 2010, these new techniques may result in greater access to transplantation for many patients who otherwise would have had little hope. In fact, a study published by Dr. Jordan in the American Journal of Transplantation in 2002, showed that the procedure appears to dramatically increase success for patients receiving cadaver organs as well as those receiving kidneys from living relatives or friends.

The infusion of IVIG has been used for several years to help prevent rejection, even in difficult cases when other anti-rejection methods have failed. While most anti-rejection medications suppress the immune system entirely, thereby increasing the patient’s risk of infection, IVIG appears to control immune responses that would harm a transplanted organ, while boosting protection from infection.

Dr. Jordan and his team have now fine-tuned their techniques in the laboratory to predict which patients would most likely benefit from IVIG. By introducing IVIG into the analysis, they are able to make poor matches much more compatible.

The process of "crossmatching" is performed by combining a sample of the potential recipient’s blood serum with a sample of the potential donor’s white cells. The question of compatibility revolves around human leukocyte antigen (HLA), proteins that regulate the way the body recognizes foreign substances.

If the recipient has developed antibodies to the donor’s HLA, the antibody attacks the antigen as an invader. This is called a "positive" crossmatch and it indicates that the recipient’s immune system would reject the donor’s organ. The potential recipient is said to be "sensitized" to the donor’s HLA. If the recipient does not have antibodies against the donor’s HLA - a negative crossmatch - this reaction does not occur.

Because highly sensitized patients have comparatively high risks of rejection and low organ-survival success rates, transplants for these patients have decreased drastically in the past 15 years. Further, there have been no therapies available to resolve issues of immune incompatibility, leaving most patients to rely on dialysis for extended periods of time in the hope that a well-matched kidney might become available.

But Dr. Jordan and his colleagues showed that adding IVIG during the crossmatch process in the laboratory inhibited the destruction of incompatible HLA-bearing cells, in most cases, essentially changing a positive crossmatch to a negative one. Subsequently, patients were able to receive IVIG therapy and undergo a transplant, if the crossmatch became negative after IVIG treatment.

"Based on our results, the IVIG crossmatch technique is a very effective predictor of the way IVIG will help a patient’s immune system to accept a transplanted organ," said Dr. Jordan. "Those who have a good response in the laboratory can be given IVIG, which eliminates the positive crossmatch and allows for successful transplantation, in most cases. Therefore, a positive crossmatch does not necessarily mean that a patient cannot receive a transplant."

Cedars-Sinai Medical Center is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Van Communications

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>