Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutation Exacerbates Eye Defect in Inherited Glaucoma

07.03.2003


While studying mice with a mutant gene whose counterpart causes inherited glaucoma in humans, researchers have discovered a second gene mutation that worsens the structural eye defect that causes this type of glaucoma.



The newly discovered gene mutation affects production of L-DOPA. The researchers suggest that it might be feasible to prevent glaucoma by administering L-DOPA, which is used in treating Parkinson’s disease.

The researchers, led by Howard Hughes Medical Institute investigator Simon W. M. John at The Jackson Laboratory, reported their findings in the March 7, 2003, issue of the journal Science. John’s colleagues included Richard Libby and Richard Smith of The Jackson Laboratory, and Frank Gonzalez of the National Cancer Institute.


In their studies in mice, the researchers explored how the absence of the gene that encodes the protein Cyp1b1 — the same defect that occurs in humans with primary congenital glaucoma (PCG) — affects development of glaucoma. In examining the mice, the scientists found malformations of ocular drainage structures that normally control pressure as the liquid aqueous humor flows out of the eyeball. These eye abnormalities are known as anterior segment dysgenesis.

According to Smith, who has treated patients with PCG, the ability to pinpoint the abnormalities in mice will most likely advance understanding of how the disease develops in humans. “The frustrating thing about attempting to understand human PCG is that there have been very few cases reported in which the patients haven’t already had glaucoma for many years and been subjected to surgery and multiple medications,” said Smith. “So, by the time we can examine the human tissue, the anatomic defect is very difficult to determine.”

According to John, these anatomic abnormalities are an underlying cause of the severe glaucoma that affects people with PCG. Although the disorder is relatively uncommon — occurring in about one in 10,000 births in the United States — it can cause devastating consequences, he said.

“If you have abnormalities or decreased functioning of the drainage structures, the input of aqueous humor can result in increased intraocular pressure and the very nasty glaucoma that human infants suffer,” he said. “This can be a painful condition with pressures high enough to tear the cornea and risk loss of vision.”

One puzzle confronting researchers, said John, is that some infants with the inherited condition can suffer serious glaucoma, while others either show delayed effects or none at all. “So, although it is not widely accepted, we believed that there could be multiple genetic and/or environmental factors that could affect the course of the disease,” he said. Such factors could interact with one another to compromise the intricate drainage structures to a greater degree in some cases than in others, said John.

A clue to one possible genetic factor arose from observations that albino mice lacking Cyp1b1 appeared to show worse pathology than pigmented mice. A series of genetic crosses of various mice by Libby and his colleagues produced strains of mice whose only difference was the presence or absence of pigmentation. The researchers ultimately pinpointed the key modifier of severity of glaucoma, showing that in the Cyp1b1-negative mice it hinged on the status of the gene that encodes the enzyme tyrosinase. The tyrosinase enzyme is involved in the pigmentation process as a key catalyst for converting the amino acid tyrosine to a precursor pigment molecule, L-DOPA.

The researchers also explored how mutations in the gene for tyrosinase affected mice lacking the FOXC1 gene, which also causes PCG and other forms of glaucoma in humans. They found that the tyrosinase-deficient FOXC1 mice also showed more severe abnormalities in their ocular drainage system.

To determine whether administering L-DOPA might alleviate these defects, the researchers administered the chemical to the drinking water of pregnant mice lacking both Cyp1b1 and tyrosinase. They found that the treatment prevented the severe abnormalities in pups born to the mice who had been fed L-DOPA.

John noted that another enzyme, tyrosine hydroxylase, is also involved in L-DOPA production, suggesting yet another biochemical pathway affecting anterior segment development in the eye and severity of PCG.

“Together, these findings open a new avenue for investigating the role of L-DOPA in anterior segment development and glaucoma caused by various genes,” said John. “Furthermore, identifying L-DOPA as a key molecule may link the functions of many of the known genes that cause anterior segment dysgenesis and glaucoma,” he said. “Most of these known genes can affect tyrosine hydroxylase in the neural crest cells, from which the relevant anterior segment structures derive. Therefore, our work provides a conceptual linkage for anterior segment developmental disorders caused by different genes, and it provides an important framework for future experiments.”

While the researchers note that L-DOPA is already used to treat symptoms of Parkinson’s disease, they are cautious about recommending its use in treating glaucoma. “L-DOPA is a molecule that affects the nervous system, and we need to proceed very carefully with further animal and human studies before we will know whether such a treatment can become a clinical reality,” said John.

It may be the case, said John, that drugs that enhance the enzyme tyrosinase itself — and not administration of L-DOPA — that will be more useful as therapeutics. “We are very excited because these findings open up a new avenue for research on these disorders,” he said.

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/john.html

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>