Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of possible anticancer drug reveals new mechanism of gene regulation

20.12.2002


Researchers at Washington University School of Medicine in St. Louis have discovered a possible new mechanism for regulating large groups of genes. While conducting yeast research on a potential new anticancer drug, the team identified a mechanism that enables the genome to silence large numbers of genes simultaneously, rather than each gene individually.



The finding emerged during research studying the molecular action of the drug rapamycin. Rapamycin currently is used to suppress the immune system following kidney transplantation, but it also is being investigated as a promising anticancer drug. Rapamycin stops tumor-cell growth through a mechanism unlike those used by other anticancer drugs. The findings are published in the December issue of Molecular Cell.

"This study shows how basic research can have a clinical impact," says study leader X. F. Steven Zheng, Ph.D., assistant professor of pathology and immunology. "It gives us insights into the molecular mechanism of rapamycin’s antitumor activity and may provide new targets for drug development."


As an immunosuppressant, rapamycin is different from other drugs. While other immunosuppressants tend to promote the growth of cancer cells, rapamycin blocks the proliferation of tumors. In addition, rapamycin blocks the development of blood vessels in tumors, a process known as angiogenesis. These features led doctors to test its use as an anticancer drug.

"For a single drug to block both tumor proliferation and angiogenesis is unique," says Zheng, who is an investigator with the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

Test-tube experiments done by others showed that rapamycin binds to a large, previously unknown cell protein known as target of rapamycin (TOR). TOR is found in organisms from yeast to humans, suggesting that it may serve an essential purpose in cells.

Zheng and colleagues used rapamycin to inactivate TOR, enabling them to examine both TOR’s function in the cell and how rapamycin works.

The researchers identified about 300 yeast genes involved in TOR-related activities. The product of one of these genes, a protein known as silent information regulator 3 (Sir3), normally clings to a battery of genes responsible for a stress protein, thereby keeping the genes inactive and silent. Stress proteins are molecules produced by cells during adverse growing conditions.

But the researchers found that when rapamycin inactivates TOR, Sir3 molecules detach from the line of stress-protein genes, triggering a stress response: The cells begin producing stress proteins, their walls thicken and they stop proliferating.

"This surprised us," Zheng says. "TOR was not known to be directly involved in stress control. Also, this means of silencing many genes simultaneously suggests a new type of gene regulation." Usually, genes are turned on or off individually by proteins targeted to specific genes, he says.

Furthermore, the investigators found that when rapamycin inactivates TOR, it also shuts down nutrient processing pathways, preventing yeast cells from using glucose to produce energy and amino acids to make new proteins.

Overall, the researchers conclude that when rapamycin inhibits TOR, it triggers a variety of responses, including stress and starvation responses. Together, these actions probably cause the cells to stop proliferating.

These insights into rapamycin’s action must now be verified in human cells.


Ai W, Bertram PG, Tsang CK, Chan T-F, Zheng XFS. Regulation of subtelomeric silencing during stress response. Molecular Cell, December 2002.

Funding from the National Institutes of Health supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>