Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of possible anticancer drug reveals new mechanism of gene regulation

20.12.2002


Researchers at Washington University School of Medicine in St. Louis have discovered a possible new mechanism for regulating large groups of genes. While conducting yeast research on a potential new anticancer drug, the team identified a mechanism that enables the genome to silence large numbers of genes simultaneously, rather than each gene individually.



The finding emerged during research studying the molecular action of the drug rapamycin. Rapamycin currently is used to suppress the immune system following kidney transplantation, but it also is being investigated as a promising anticancer drug. Rapamycin stops tumor-cell growth through a mechanism unlike those used by other anticancer drugs. The findings are published in the December issue of Molecular Cell.

"This study shows how basic research can have a clinical impact," says study leader X. F. Steven Zheng, Ph.D., assistant professor of pathology and immunology. "It gives us insights into the molecular mechanism of rapamycin’s antitumor activity and may provide new targets for drug development."


As an immunosuppressant, rapamycin is different from other drugs. While other immunosuppressants tend to promote the growth of cancer cells, rapamycin blocks the proliferation of tumors. In addition, rapamycin blocks the development of blood vessels in tumors, a process known as angiogenesis. These features led doctors to test its use as an anticancer drug.

"For a single drug to block both tumor proliferation and angiogenesis is unique," says Zheng, who is an investigator with the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

Test-tube experiments done by others showed that rapamycin binds to a large, previously unknown cell protein known as target of rapamycin (TOR). TOR is found in organisms from yeast to humans, suggesting that it may serve an essential purpose in cells.

Zheng and colleagues used rapamycin to inactivate TOR, enabling them to examine both TOR’s function in the cell and how rapamycin works.

The researchers identified about 300 yeast genes involved in TOR-related activities. The product of one of these genes, a protein known as silent information regulator 3 (Sir3), normally clings to a battery of genes responsible for a stress protein, thereby keeping the genes inactive and silent. Stress proteins are molecules produced by cells during adverse growing conditions.

But the researchers found that when rapamycin inactivates TOR, Sir3 molecules detach from the line of stress-protein genes, triggering a stress response: The cells begin producing stress proteins, their walls thicken and they stop proliferating.

"This surprised us," Zheng says. "TOR was not known to be directly involved in stress control. Also, this means of silencing many genes simultaneously suggests a new type of gene regulation." Usually, genes are turned on or off individually by proteins targeted to specific genes, he says.

Furthermore, the investigators found that when rapamycin inactivates TOR, it also shuts down nutrient processing pathways, preventing yeast cells from using glucose to produce energy and amino acids to make new proteins.

Overall, the researchers conclude that when rapamycin inhibits TOR, it triggers a variety of responses, including stress and starvation responses. Together, these actions probably cause the cells to stop proliferating.

These insights into rapamycin’s action must now be verified in human cells.


Ai W, Bertram PG, Tsang CK, Chan T-F, Zheng XFS. Regulation of subtelomeric silencing during stress response. Molecular Cell, December 2002.

Funding from the National Institutes of Health supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>