Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of possible anticancer drug reveals new mechanism of gene regulation

20.12.2002


Researchers at Washington University School of Medicine in St. Louis have discovered a possible new mechanism for regulating large groups of genes. While conducting yeast research on a potential new anticancer drug, the team identified a mechanism that enables the genome to silence large numbers of genes simultaneously, rather than each gene individually.



The finding emerged during research studying the molecular action of the drug rapamycin. Rapamycin currently is used to suppress the immune system following kidney transplantation, but it also is being investigated as a promising anticancer drug. Rapamycin stops tumor-cell growth through a mechanism unlike those used by other anticancer drugs. The findings are published in the December issue of Molecular Cell.

"This study shows how basic research can have a clinical impact," says study leader X. F. Steven Zheng, Ph.D., assistant professor of pathology and immunology. "It gives us insights into the molecular mechanism of rapamycin’s antitumor activity and may provide new targets for drug development."


As an immunosuppressant, rapamycin is different from other drugs. While other immunosuppressants tend to promote the growth of cancer cells, rapamycin blocks the proliferation of tumors. In addition, rapamycin blocks the development of blood vessels in tumors, a process known as angiogenesis. These features led doctors to test its use as an anticancer drug.

"For a single drug to block both tumor proliferation and angiogenesis is unique," says Zheng, who is an investigator with the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

Test-tube experiments done by others showed that rapamycin binds to a large, previously unknown cell protein known as target of rapamycin (TOR). TOR is found in organisms from yeast to humans, suggesting that it may serve an essential purpose in cells.

Zheng and colleagues used rapamycin to inactivate TOR, enabling them to examine both TOR’s function in the cell and how rapamycin works.

The researchers identified about 300 yeast genes involved in TOR-related activities. The product of one of these genes, a protein known as silent information regulator 3 (Sir3), normally clings to a battery of genes responsible for a stress protein, thereby keeping the genes inactive and silent. Stress proteins are molecules produced by cells during adverse growing conditions.

But the researchers found that when rapamycin inactivates TOR, Sir3 molecules detach from the line of stress-protein genes, triggering a stress response: The cells begin producing stress proteins, their walls thicken and they stop proliferating.

"This surprised us," Zheng says. "TOR was not known to be directly involved in stress control. Also, this means of silencing many genes simultaneously suggests a new type of gene regulation." Usually, genes are turned on or off individually by proteins targeted to specific genes, he says.

Furthermore, the investigators found that when rapamycin inactivates TOR, it also shuts down nutrient processing pathways, preventing yeast cells from using glucose to produce energy and amino acids to make new proteins.

Overall, the researchers conclude that when rapamycin inhibits TOR, it triggers a variety of responses, including stress and starvation responses. Together, these actions probably cause the cells to stop proliferating.

These insights into rapamycin’s action must now be verified in human cells.


Ai W, Bertram PG, Tsang CK, Chan T-F, Zheng XFS. Regulation of subtelomeric silencing during stress response. Molecular Cell, December 2002.

Funding from the National Institutes of Health supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>