Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.Va. researchers uncover role of platelets in hardening of the arteries

16.12.2002


Scientists at the University of Virginia School of Medicine have discovered a new contributor to atherosclerosis, the most common form of hardening of the arteries. Marked by cholesterol-calcium-lipid deposits, atherosclerosis is the main cause of heart attacks, the number one killer in the U.S. Doctors at U.Va. say research on mice has determined for the first time that activated platelets circulating in the blood, long understood as markers for atherosclerosis, really serve as participants in the process that eventually leads to atherosclerosis. The findings of the two-year study are published in the Dec. 16 online issue of the journal Nature Medicine, found at www.nature.com/naturemedicine.



"These platelets are time bombs in the blood," said Dr. Klaus Ley, director of the Cardiovascular Research Center and professor of biomedical engineering, molecular physiology and biological physics at U.Va. "The hope now is that we can develop anti-platelet drugs to limit activation, which would be a beneficial, effective preventive measure against heart attack. These important observations could translate into improved therapies for limiting this extremely prevalent disease."

There is a commonly used test for activated platelets, called flow cytometry. Ley believes some patients may want to be tested for the presence of such platelets, in addition to being tested for a compound called C-reactive protein (CRP), which increases when inflammation is present. The American Heart Association is studying whether a CRP test should be part of a routine check-up. "What was surprising is how long these activated platelets stay in the blood," Ley said.


Platelets, round or oval disks, are routinely found in blood and play an important role in clotting. Platelets are activated as part of the blood clotting response to injury or as part of the inflammatory response. They become sticky and are prone to bind with monocytes, a type of white blood cell. It’s believed aspirin plays a role in preventing heart attacks by acting on platelets.

In the study, U.Va. researchers injected activated platelets into mice engineered to have high cholesterol levels (1000 vs. 200 for humans) and studied the interaction with human aortic endothelial cells. They found that activated platelets were able to deposit pro-inflammatory factors, or chemokines, on monocytes and vessel walls, a key element in the formation of atherosclerotic lesions, or altered tissue. The researchers also found that a protein called platelet P-selectin is indispensable for the interaction of the platelets in the formation of atherosclerotic lesions. Researchers at University Hospital in Aachen, Germany and at the Howard Hughes Medical Institute in New York contributed to the study.



*Note: Dr. Ley can be reached for comment at: 434-243-9966 (office) or 434-974-9265 (home) or by email: klausley@virginia.edu.


Bob Beard | EurekAlert!
Further information:
http://www.nature.com/naturemedicine
http://hsc.virginia.edu/news

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>