Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ovary gene may explain certain aspects of infertility

26.11.2002


Harvard Medical School researchers have uncovered an ovary gene whose absence from mouse egg cells produced severe pregnancy complications. The gene, Fmn2, which produces the protein formin-2, is similar in mice and humans and offers promise for understanding embryo loss, birth defects, and infertility in women. The study appears in the December Nature Cell Biology.



"As humans we are incredibly bad at producing eggs with the normal number of chromosomes, which is the leading cause of pregnancy loss in women," says Benjamin Leader, an HMS MD/PhD candidate, and the paper’s lead author. "The biological means for ensuring proper distribution of chromosomes to the egg has been difficult to determine.

"Our study shows that the formin-2 gene is required in order to ensure the proper distribution of chromosomes to the egg. About one percent of women suffer from recurrent pregnancy loss, which can be defined as a loss of greater than two or three pregnancies. We are now actively searching for mutations involving the formin-2 gene in women with reproductive loss and infertility," Leader added.


Egg cells lacking Fmn2 were unable to complete the first round of reproductive cell division, known as meiosis I. The egg cell failed to correctly position a significant protein-DNA, the metaphase spindle, thereby halting the division process. The result was lack of formation of the first polar body, a new cell that signifies completion of the first meiotic division, and the daughter egg cell, which would otherwise develop into a mature egg.

Leader observed that Fmn2-deficient female mice produced embryos with three or five sets of chromosomes, a deviation that resulted in cell death. Normal mice with Fmn2 produce embryos with two sets of chromosomes. The researchers also found that healthy ovaries transplanted into Fmn2-deficient females rescued pregnancy loss, whereas transplant of Fmn2-deficient ovaries into healthy females destroyed the healthy females’ ability to produce offspring. Furthermore, examination of the experimental mice revealed a radically reduced number of embryos in Fmn2-deficient females.



This research was supported in part by the Howard Hughes Medical Institute and a Howard Hughes Medical Institute pre-doctoral fellowship grant.

Harvard Medical School has more than 5,000 full-time faculty working in eight academic departments based at the School’s Boston quadrangle or in one of 47 academic departments at 17 affiliated teaching hospitals and research institutes. Those HMS affiliated institutions include Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Cambridge Hospital, Center for Blood Research, Children’s Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Joslin Diabetes Center, Judge Baker Children’s Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, Massachusetts Mental Health Center, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, VA Boston Healthcare System.

Donna Burtanger | EurekAlert!

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>