Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ovary gene may explain certain aspects of infertility

26.11.2002


Harvard Medical School researchers have uncovered an ovary gene whose absence from mouse egg cells produced severe pregnancy complications. The gene, Fmn2, which produces the protein formin-2, is similar in mice and humans and offers promise for understanding embryo loss, birth defects, and infertility in women. The study appears in the December Nature Cell Biology.



"As humans we are incredibly bad at producing eggs with the normal number of chromosomes, which is the leading cause of pregnancy loss in women," says Benjamin Leader, an HMS MD/PhD candidate, and the paper’s lead author. "The biological means for ensuring proper distribution of chromosomes to the egg has been difficult to determine.

"Our study shows that the formin-2 gene is required in order to ensure the proper distribution of chromosomes to the egg. About one percent of women suffer from recurrent pregnancy loss, which can be defined as a loss of greater than two or three pregnancies. We are now actively searching for mutations involving the formin-2 gene in women with reproductive loss and infertility," Leader added.


Egg cells lacking Fmn2 were unable to complete the first round of reproductive cell division, known as meiosis I. The egg cell failed to correctly position a significant protein-DNA, the metaphase spindle, thereby halting the division process. The result was lack of formation of the first polar body, a new cell that signifies completion of the first meiotic division, and the daughter egg cell, which would otherwise develop into a mature egg.

Leader observed that Fmn2-deficient female mice produced embryos with three or five sets of chromosomes, a deviation that resulted in cell death. Normal mice with Fmn2 produce embryos with two sets of chromosomes. The researchers also found that healthy ovaries transplanted into Fmn2-deficient females rescued pregnancy loss, whereas transplant of Fmn2-deficient ovaries into healthy females destroyed the healthy females’ ability to produce offspring. Furthermore, examination of the experimental mice revealed a radically reduced number of embryos in Fmn2-deficient females.



This research was supported in part by the Howard Hughes Medical Institute and a Howard Hughes Medical Institute pre-doctoral fellowship grant.

Harvard Medical School has more than 5,000 full-time faculty working in eight academic departments based at the School’s Boston quadrangle or in one of 47 academic departments at 17 affiliated teaching hospitals and research institutes. Those HMS affiliated institutions include Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Cambridge Hospital, Center for Blood Research, Children’s Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Joslin Diabetes Center, Judge Baker Children’s Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, Massachusetts Mental Health Center, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, VA Boston Healthcare System.

Donna Burtanger | EurekAlert!

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>