Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ovary gene may explain certain aspects of infertility

26.11.2002


Harvard Medical School researchers have uncovered an ovary gene whose absence from mouse egg cells produced severe pregnancy complications. The gene, Fmn2, which produces the protein formin-2, is similar in mice and humans and offers promise for understanding embryo loss, birth defects, and infertility in women. The study appears in the December Nature Cell Biology.



"As humans we are incredibly bad at producing eggs with the normal number of chromosomes, which is the leading cause of pregnancy loss in women," says Benjamin Leader, an HMS MD/PhD candidate, and the paper’s lead author. "The biological means for ensuring proper distribution of chromosomes to the egg has been difficult to determine.

"Our study shows that the formin-2 gene is required in order to ensure the proper distribution of chromosomes to the egg. About one percent of women suffer from recurrent pregnancy loss, which can be defined as a loss of greater than two or three pregnancies. We are now actively searching for mutations involving the formin-2 gene in women with reproductive loss and infertility," Leader added.


Egg cells lacking Fmn2 were unable to complete the first round of reproductive cell division, known as meiosis I. The egg cell failed to correctly position a significant protein-DNA, the metaphase spindle, thereby halting the division process. The result was lack of formation of the first polar body, a new cell that signifies completion of the first meiotic division, and the daughter egg cell, which would otherwise develop into a mature egg.

Leader observed that Fmn2-deficient female mice produced embryos with three or five sets of chromosomes, a deviation that resulted in cell death. Normal mice with Fmn2 produce embryos with two sets of chromosomes. The researchers also found that healthy ovaries transplanted into Fmn2-deficient females rescued pregnancy loss, whereas transplant of Fmn2-deficient ovaries into healthy females destroyed the healthy females’ ability to produce offspring. Furthermore, examination of the experimental mice revealed a radically reduced number of embryos in Fmn2-deficient females.



This research was supported in part by the Howard Hughes Medical Institute and a Howard Hughes Medical Institute pre-doctoral fellowship grant.

Harvard Medical School has more than 5,000 full-time faculty working in eight academic departments based at the School’s Boston quadrangle or in one of 47 academic departments at 17 affiliated teaching hospitals and research institutes. Those HMS affiliated institutions include Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Cambridge Hospital, Center for Blood Research, Children’s Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Joslin Diabetes Center, Judge Baker Children’s Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, Massachusetts Mental Health Center, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, VA Boston Healthcare System.

Donna Burtanger | EurekAlert!

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>