Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The growing Staphylococcus aureus arsenal


Staphylococcus aureus is an opportunistic pathogen with a diverse battery of virulence factors, each of which can act alone or in concert in the development of persistent and sometimes lethal infections such as sepsis, toxic shock syndrome, food poisoning and severe skin diseases.

Staphylococcal infections begin when the organism gains access to host tissues or the adjoining blood supply through breaches in the skin. More than 20% of healthy humans are natural carriers of S. aureus, 10%-20% of these carriers harbor multidrug-resistant strains, and the frequencies of both community-acquired and hospital-acquired staphylococcal infections continue to increase. Disturbingly, our stockpile of antibiotics is not evolving at a rate capable of quelling the uprising of resistance.

Determining whether an infection is contained or succeeds in spreading is a complex battle between defensive cells of the patient’s immune system and the onslaught of the array of enzymes, toxins and other injurious factors released by the bacterium. During early stages of infection the S. aureus expresses proteins that enable its binding to, and colonization of, host tissue. Following establishment within the host, other toxins and enzymes help the staphylococci spread to nearby tissue and begin the process of colonization over and over again.

In the November 18 issue of the Journal of Clinical Investigation Eric Brown and colleagues from the Texas A&M University Health Science Center further investigate the role of another interesting member of the S. aureus artillery. The MHC class II Analog Protein (known as Map) was shown to interfere with the function of T cells, a patient’s most specific defense against foreign intruders, which appeared to promote the persistence and survival of S. aureus in infected mice.

Eric Brown
Texas A&M University System Health Science Center
Albert B. Alkek Institute of Biosciences and Technology
2121 W. Holcombe Blvd.
Suite 603
Houston, TX 77030-7552
Phone 1: 713-677-7572
Fax 1: 713-677-7576

Brooke Grindlinger, PhD | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>