Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research shows drug blocks enzyme that activates bacterial and viral toxins

18.11.2002


A paper published in the December, 2002 issue of Infection and Immunity by a research team at the Louisiana State University (LSU) Health Sciences Center in New Orleans provides clear evidence that the lethal toxins of such infectious bacteria as Pseudomonas and anthrax can be blocked by a drug developed at the LSU Health Sciences Center in New Orleans. The compound, called D6R (hexa-D-arginine), is a potent, stable, small molecule inhibitor of furin.



Bacteria produce a number of toxins which rapidly enter and kill cells. In anthrax, the lethal factor toxin must bind to another part of the anthrax toxin, called the PA molecule, before it can enter and destroy a cell. But before binding can occur, the PA molecule produced by the bacteria must be made smaller. Furin, a protein-cutting enzyme or protease, which sits on the outside of cells, cuts the PA molecule, making it small enough for the lethal factor toxin to attach. Lethal factor toxin cannot bind to PA that has not already been cut by furin; therefore, without cut PA, lethal factor toxin loses the ability to bind to and enter the cell, and becomes harmless.

Working on the theory that if the action of furin could be blocked, the toxins would not be activated and therefore unable to kill cells, the research team set out to make a peptide that would suppress furin activity. In collaboration with a research group in California (Torrey Pines Institute for Molecular Studies), the LSUHSC group developed the furin inhibitor, D6R, for which a patent application has now been filed. The LSUHSC research group under the direction of Dr. Iris Lindberg, Professor of Biochemistry, included current postdoctoral fellow Dr. Miroslav S. Sarac, and past fellow Dr. Angus Cameron.


In the current paper, the LSUHSC research scientists examined the therapeutic potential of D6R against Pseudomonas aeruginosa exotoxin, both in cell culture and in live animals (mice). Various concentrations of D6R were tested, with no apparent side effects, regardless of dose. (However, no tissue microhistology has yet been done, and these studies are needed to reveal any subtle damaging effects.) The survival rate of cells in culture 48 hours after treatment with D6R–given at the same time as Pseudomonas toxin-- was significant–50%. The survival rate of the group of mice treated with D6R for two days prior to administration of toxin was also about 50% at seven days. The group of mice treated with D6R at the same time toxin was administered showed a 25% survival rate.

Pseudomonas aeruginosa is an opportunistic pathogen causing urinary tract infections, respiratory system infections, dermatitis, soft tissue infections, bacteremia and a variety of systemic infections, especially in those with immunosuppression related to cancer, HIV and severe burns. P. aeruginosa is known for its resistance to antibiotics. Although some antibiotics are effective against some strains, even those antibiotics are not effective against all strains.

Sepsis, a systemic infection, is the leading cause of death among critically ill patients in the US. It is estimated that about 750,000 American people develop sepsis each year and that more than 200,000 die from it. One of the factors contributing to the high mortality of sepsis (which has increased more than 90% in the last 20 years according to the National Vital Statistics Report, 2000,) is damage from excessive production of cytokines (chemical messengers of the immune system). The LSUHSC scientists found that D6R was not only able to protect cells from lethal toxins, but to do so without invoking a cytokine response itself. D6R also dramatically lowered the production of one cytokine, TNF.

According to the researchers, D6R appears to exhibit a number of potentially promising attributes. It is able to cross cell membranes; it is small enough to achieve useful therapeutic concentrations; and it exhibits no apparent toxicity at concentrations 100x therapeutic levels. It could also prove useful in treating infection from other viruses and bacteria whose toxins are dependent upon furin activity for activation. Besides Pseudomonas and anthrax, these include Ebola, clostridium, diphtheria, shiga, RSV, HIV-1, infectious bronchitis and yellow fever among others.

Dr. Lindberg was recently awarded a grant by the National Institute of Allergy and Infectious Diseases to test D6R against anthrax toxin in both cells as well as animal models (rats and mice). She will further examine the structural requirements of D6R-related molecules against furin with the idea of eventually using D6R (or a better drug developed through these studies) as a therapeutic drug for anthrax, Pseudomonas and other furin-dependent infections. She will also conduct safety and toxicity studies during the grant period.

"This is very exciting research," said Dr. Lindberg. "We hope that D6R-like furin inhibitors will represent effective and potent new drugs that will not only prove a viable approach to combat some types of bacterial infection, but also add to our country’s bioweapons defense arsenal."

Leslie Capo | EurekAlert!
Further information:
http://www.lsumc.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>