Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research shows drug blocks enzyme that activates bacterial and viral toxins

18.11.2002


A paper published in the December, 2002 issue of Infection and Immunity by a research team at the Louisiana State University (LSU) Health Sciences Center in New Orleans provides clear evidence that the lethal toxins of such infectious bacteria as Pseudomonas and anthrax can be blocked by a drug developed at the LSU Health Sciences Center in New Orleans. The compound, called D6R (hexa-D-arginine), is a potent, stable, small molecule inhibitor of furin.



Bacteria produce a number of toxins which rapidly enter and kill cells. In anthrax, the lethal factor toxin must bind to another part of the anthrax toxin, called the PA molecule, before it can enter and destroy a cell. But before binding can occur, the PA molecule produced by the bacteria must be made smaller. Furin, a protein-cutting enzyme or protease, which sits on the outside of cells, cuts the PA molecule, making it small enough for the lethal factor toxin to attach. Lethal factor toxin cannot bind to PA that has not already been cut by furin; therefore, without cut PA, lethal factor toxin loses the ability to bind to and enter the cell, and becomes harmless.

Working on the theory that if the action of furin could be blocked, the toxins would not be activated and therefore unable to kill cells, the research team set out to make a peptide that would suppress furin activity. In collaboration with a research group in California (Torrey Pines Institute for Molecular Studies), the LSUHSC group developed the furin inhibitor, D6R, for which a patent application has now been filed. The LSUHSC research group under the direction of Dr. Iris Lindberg, Professor of Biochemistry, included current postdoctoral fellow Dr. Miroslav S. Sarac, and past fellow Dr. Angus Cameron.


In the current paper, the LSUHSC research scientists examined the therapeutic potential of D6R against Pseudomonas aeruginosa exotoxin, both in cell culture and in live animals (mice). Various concentrations of D6R were tested, with no apparent side effects, regardless of dose. (However, no tissue microhistology has yet been done, and these studies are needed to reveal any subtle damaging effects.) The survival rate of cells in culture 48 hours after treatment with D6R–given at the same time as Pseudomonas toxin-- was significant–50%. The survival rate of the group of mice treated with D6R for two days prior to administration of toxin was also about 50% at seven days. The group of mice treated with D6R at the same time toxin was administered showed a 25% survival rate.

Pseudomonas aeruginosa is an opportunistic pathogen causing urinary tract infections, respiratory system infections, dermatitis, soft tissue infections, bacteremia and a variety of systemic infections, especially in those with immunosuppression related to cancer, HIV and severe burns. P. aeruginosa is known for its resistance to antibiotics. Although some antibiotics are effective against some strains, even those antibiotics are not effective against all strains.

Sepsis, a systemic infection, is the leading cause of death among critically ill patients in the US. It is estimated that about 750,000 American people develop sepsis each year and that more than 200,000 die from it. One of the factors contributing to the high mortality of sepsis (which has increased more than 90% in the last 20 years according to the National Vital Statistics Report, 2000,) is damage from excessive production of cytokines (chemical messengers of the immune system). The LSUHSC scientists found that D6R was not only able to protect cells from lethal toxins, but to do so without invoking a cytokine response itself. D6R also dramatically lowered the production of one cytokine, TNF.

According to the researchers, D6R appears to exhibit a number of potentially promising attributes. It is able to cross cell membranes; it is small enough to achieve useful therapeutic concentrations; and it exhibits no apparent toxicity at concentrations 100x therapeutic levels. It could also prove useful in treating infection from other viruses and bacteria whose toxins are dependent upon furin activity for activation. Besides Pseudomonas and anthrax, these include Ebola, clostridium, diphtheria, shiga, RSV, HIV-1, infectious bronchitis and yellow fever among others.

Dr. Lindberg was recently awarded a grant by the National Institute of Allergy and Infectious Diseases to test D6R against anthrax toxin in both cells as well as animal models (rats and mice). She will further examine the structural requirements of D6R-related molecules against furin with the idea of eventually using D6R (or a better drug developed through these studies) as a therapeutic drug for anthrax, Pseudomonas and other furin-dependent infections. She will also conduct safety and toxicity studies during the grant period.

"This is very exciting research," said Dr. Lindberg. "We hope that D6R-like furin inhibitors will represent effective and potent new drugs that will not only prove a viable approach to combat some types of bacterial infection, but also add to our country’s bioweapons defense arsenal."

Leslie Capo | EurekAlert!
Further information:
http://www.lsumc.edu/

More articles from Health and Medicine:

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

nachricht Improving memory with magnets
28.03.2017 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>