Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison researchers identify key to cancer cell mobility

07.11.2002


In the race to cure cancer, researchers look for roadblocks that could stop cancer in its tracks, preventing it from spreading to other parts of the body. Scientists from the University of Wisconsin-Madison may have found that blockade - an enzyme critical to the ability of cells to metastasize, a biological phenomenon by which cells migrate. The findings are published in the Nov. 7 issue of the journal Nature.



"The real, life-threatening problem with most cancers is that they migrate away from the initial site," says Richard Anderson, a UW-Madison pharmacology professor and senior author of the paper. "If we could regulate a cell’s ability to move in a selective way, we may be able to block cancer metastasis."

Researchers have identified several important factors involved in cell migration, but they continue to search for the mechanisms that regulate these key factors. Anderson and his group have found that the enzyme, noted scientifically as PIPKI?661, appears to underpin cells’ ability to move from organ to organ.


Cells can migrate through the body because they have small clusters of proteins called focal adhesions. When these clusters, located on the cell surface, respond to signals from molecules on other cells, they bind to those molecules. Once attached, the focal adhesions can pull the cell forward. Like wheels on a skateboard, these adhesions then give cells the ability to move around the body.

The key to blocking this movement, says Anderson, is inhibiting the assembly of focal adhesions. But, as he adds, these protein clusters result from the activity of several key factors, which receive their signals from a number of sources - proteins inside the cell or molecules outside it. To block focal adhesion assembly, one would have to block this other activity.

The key to doing that appears to be the enzyme, PIPKI?661, identified by Anderson and his colleagues, Kun Ling and Renee Doughman.

"What we’ve identified is an enzyme that regulates the assembly of focal adhesions," says Anderson. "Researchers have been looking for this enzyme for years."

PIPKI?661 interacts directly with two key proteins (FAK and talin) involved in focal adhesion assembly. At the same time, PIPKI?661 also generates an important second messenger (P14,5P2) that Anderson says both regulates a number of important proteins inside the cell and stimulates their ability to form focal adhesions.

Because of this enzyme’s central role in regulating the factors involved in the assembly of focal adhesions, the researchers say it provides a promising target for developing drugs to prevent cancer cells from metastasizing.

"PIPKI?661 is like one of those circular (traffic) intersections in Italy and England," says Anderson. "There are all sorts of signals feeding in and out of it, and the traffic never stops." Changing the design of the intersection, he says, could change the flow of those signals.

By blocking the activity of PIPKI?661 - the intersection of focal adhesion assembly - cancer cells could become immobile, thereby unable to migrate to other parts of the body.

"Exactly how cancer cells metastasize has been poorly understood," says Anderson. "This discovery is a real breakthrough that could really have an impact."


- Emily Carlson, (608) 262-9772, emilycarlson@wisc.edu

Richard Anderson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>