Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison researchers identify key to cancer cell mobility

07.11.2002


In the race to cure cancer, researchers look for roadblocks that could stop cancer in its tracks, preventing it from spreading to other parts of the body. Scientists from the University of Wisconsin-Madison may have found that blockade - an enzyme critical to the ability of cells to metastasize, a biological phenomenon by which cells migrate. The findings are published in the Nov. 7 issue of the journal Nature.



"The real, life-threatening problem with most cancers is that they migrate away from the initial site," says Richard Anderson, a UW-Madison pharmacology professor and senior author of the paper. "If we could regulate a cell’s ability to move in a selective way, we may be able to block cancer metastasis."

Researchers have identified several important factors involved in cell migration, but they continue to search for the mechanisms that regulate these key factors. Anderson and his group have found that the enzyme, noted scientifically as PIPKI?661, appears to underpin cells’ ability to move from organ to organ.


Cells can migrate through the body because they have small clusters of proteins called focal adhesions. When these clusters, located on the cell surface, respond to signals from molecules on other cells, they bind to those molecules. Once attached, the focal adhesions can pull the cell forward. Like wheels on a skateboard, these adhesions then give cells the ability to move around the body.

The key to blocking this movement, says Anderson, is inhibiting the assembly of focal adhesions. But, as he adds, these protein clusters result from the activity of several key factors, which receive their signals from a number of sources - proteins inside the cell or molecules outside it. To block focal adhesion assembly, one would have to block this other activity.

The key to doing that appears to be the enzyme, PIPKI?661, identified by Anderson and his colleagues, Kun Ling and Renee Doughman.

"What we’ve identified is an enzyme that regulates the assembly of focal adhesions," says Anderson. "Researchers have been looking for this enzyme for years."

PIPKI?661 interacts directly with two key proteins (FAK and talin) involved in focal adhesion assembly. At the same time, PIPKI?661 also generates an important second messenger (P14,5P2) that Anderson says both regulates a number of important proteins inside the cell and stimulates their ability to form focal adhesions.

Because of this enzyme’s central role in regulating the factors involved in the assembly of focal adhesions, the researchers say it provides a promising target for developing drugs to prevent cancer cells from metastasizing.

"PIPKI?661 is like one of those circular (traffic) intersections in Italy and England," says Anderson. "There are all sorts of signals feeding in and out of it, and the traffic never stops." Changing the design of the intersection, he says, could change the flow of those signals.

By blocking the activity of PIPKI?661 - the intersection of focal adhesion assembly - cancer cells could become immobile, thereby unable to migrate to other parts of the body.

"Exactly how cancer cells metastasize has been poorly understood," says Anderson. "This discovery is a real breakthrough that could really have an impact."


- Emily Carlson, (608) 262-9772, emilycarlson@wisc.edu

Richard Anderson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>