Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison researchers identify key to cancer cell mobility

07.11.2002


In the race to cure cancer, researchers look for roadblocks that could stop cancer in its tracks, preventing it from spreading to other parts of the body. Scientists from the University of Wisconsin-Madison may have found that blockade - an enzyme critical to the ability of cells to metastasize, a biological phenomenon by which cells migrate. The findings are published in the Nov. 7 issue of the journal Nature.



"The real, life-threatening problem with most cancers is that they migrate away from the initial site," says Richard Anderson, a UW-Madison pharmacology professor and senior author of the paper. "If we could regulate a cell’s ability to move in a selective way, we may be able to block cancer metastasis."

Researchers have identified several important factors involved in cell migration, but they continue to search for the mechanisms that regulate these key factors. Anderson and his group have found that the enzyme, noted scientifically as PIPKI?661, appears to underpin cells’ ability to move from organ to organ.


Cells can migrate through the body because they have small clusters of proteins called focal adhesions. When these clusters, located on the cell surface, respond to signals from molecules on other cells, they bind to those molecules. Once attached, the focal adhesions can pull the cell forward. Like wheels on a skateboard, these adhesions then give cells the ability to move around the body.

The key to blocking this movement, says Anderson, is inhibiting the assembly of focal adhesions. But, as he adds, these protein clusters result from the activity of several key factors, which receive their signals from a number of sources - proteins inside the cell or molecules outside it. To block focal adhesion assembly, one would have to block this other activity.

The key to doing that appears to be the enzyme, PIPKI?661, identified by Anderson and his colleagues, Kun Ling and Renee Doughman.

"What we’ve identified is an enzyme that regulates the assembly of focal adhesions," says Anderson. "Researchers have been looking for this enzyme for years."

PIPKI?661 interacts directly with two key proteins (FAK and talin) involved in focal adhesion assembly. At the same time, PIPKI?661 also generates an important second messenger (P14,5P2) that Anderson says both regulates a number of important proteins inside the cell and stimulates their ability to form focal adhesions.

Because of this enzyme’s central role in regulating the factors involved in the assembly of focal adhesions, the researchers say it provides a promising target for developing drugs to prevent cancer cells from metastasizing.

"PIPKI?661 is like one of those circular (traffic) intersections in Italy and England," says Anderson. "There are all sorts of signals feeding in and out of it, and the traffic never stops." Changing the design of the intersection, he says, could change the flow of those signals.

By blocking the activity of PIPKI?661 - the intersection of focal adhesion assembly - cancer cells could become immobile, thereby unable to migrate to other parts of the body.

"Exactly how cancer cells metastasize has been poorly understood," says Anderson. "This discovery is a real breakthrough that could really have an impact."


- Emily Carlson, (608) 262-9772, emilycarlson@wisc.edu

Richard Anderson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>