Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hibernating Squirrels Provide Clues for Stroke, Parkinson’s

04.11.2002


A compound that enables squirrels to hibernate may one day help minimize brain damage that results from stroke, according to a researcher at the Medical College of Georgia and Veterans Affairs Medical Center in Augusta.




In an animal model for stroke, delta opioid peptide reduced by as much as 75 percent the damage to the brain’s striatum, the deeper region of the brain and a major target for strokes, according to Dr. Cesario V. Borlongan, neuroscientist.

In fact, evidence suggests that the compound, which puts cells in a temporary state of suspended animation, may help protect brain cells from the ravages of Parkinson’s disease as well.


“When the animals were introduced to an experimental stroke, then injected with delta opioid peptide, we could see a reduction in the damage done by stroke; brain damage is reduced and the neurological deficits associated with stroke are definitely reduced,” Dr. Borlongan said.

More extensive animal and human studies are needed but Dr. Borlongan said the peptide, which occurs naturally in man and may play a role in the body’s effort to protect the brain, should one day minimize stroke damage.

His stroke work garnered the International College of Geriatrics Psychoneuropharmacology Award presented this month at the college’s annual meeting in Barcelona, Spain.

The original insight about squirrels and delta opioid peptide came from work by Dr. Tsung-Ping Su at the National Institutes of Health. In the 1980s, Dr. Su was studying hibernation and found increased levels of the compound. Dr. Su also found that when he gave non-hibernating squirrels more of the compound, the previously hyperactive critters began hibernating even in the summer.

Although there’s no hard evidence that humans hibernate, they do have endogenous levels of delta opioid peptide that Dr. Borlongan believes may play a role in natural protective mechanisms.

During hibernation, levels of the peptide increase and the metabolic rate and energy demands of the entire animal drop dramatically. That led Dr. Borlongan to wonder if that same state might help protect brain cells specifically. “Our thinking here is that if we take this drug, probably brain cells are going to go into this mode of hibernation. So if you get a stroke or some other neurological disorder, most of the brain cells will be protected.”

When Dr. Borlongan gave high doses of the compound to the animal model for stroke, the rats -- which are not known to hibernate -- looked sleepy in the hours following but recovered dramatically. In fact, at least in rats, the levels of endogenous peptide increased immediately following a stroke, which makes him suspect that the levels may also increase in humans.

Patients who receive more of this compound in the hours after stroke -- much as many now receive TPA or aspirin -- may get significant protective benefits. “The oxygen needs were dramatically reduced: that is how it works to protect the brain,” Dr. Borlongan said of the animal cells.

To study the role in Parkinson’s, he put varying levels of delta opioid peptide into a culture containing dopaminergic cells, which produce dopamine, a key cell communicator deficient in Parkinson’s. He found that those that got the most peptide survived the longest. In an animal model for the disease, the reduction in dopamine levels was far less in the animals receiving the highest doses of delta opioid peptide.

These findings, presented at the Barcelona meeting and reported partially in the journals NeuroReport and Cell Transplantation, point to the potential of the compound but also to the need for additional animal studies before moving toward clinical trials, Dr. Borlongan said.

One critical issue is that the animal model for stroke has only a single stroke and the majority of humans have a second stroke within months. One of his many goals is to develop a better animal model and see if compounds such as delta opioid peptide and TPA can help patients avoid subsequent strokes.

Other issues that need study are potential side effects, such as how well do the cells function after hibernation; animal models were sleepy while getting the drug but they functioned well afterward, he said. “My feeling is that sleep could be a correlate of hibernation.”

The researcher believes this cell hibernation may have other roles as well, including slowing the aging process. Its potential for helping donated livers, hearts and kidneys remain viable longer until they are transplanted already is being explored by others in clinical trials.

Dr. Borlongan, who joined the MCG faculty in February after completing a senior staff fellowship at the NIH’s National Institute on Drug Abuse, had NIH support for his work prior to joining the MCG faculty. He now has a VA Career Development Award. Several grant applications are pending.

This summer he also received the Rafaelsen Fellowship Award from Collegium Internationale NeuroPsychopharmacologicum in Montreal for his work in brain-cell protection strategies and neural transplantation. And, he was recently elected a councilor for the American Society for Neural Transplantation and Repair.


Please email comments, suggestions or questions to:
Toni Baker, tbaker@mail.mcg.edu.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/
http://www.mcg.edu/news/2002NewsRel/Borlongan.html

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>