Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology separates cancer from benign tumors

04.11.2002


A group of researchers in Trondheim, Norway, are the first in the world to use in vivo magnetic resonance spectroscopy (MRS) to separate benign tumors from cancer. Ingrid Susann Gribbestad shows, in her recently published thesis, how one can discover breast cancer and monitor the treatment by using this new technology. The work is financed by the Norwegian Cancer Society and the Research Council of Norway.



www.kreft.no: The research behind this thesis was done at the Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology. The results also showed how MRS can be used to map metabolism connections in the breast.

” We are the first research group in the world who has used magnetic resonance spectroscopy (MRS) to map which chemical substances exist in the cancerous tumor compared to the surrounding healthy tissue. The finds in 30 patients show several differences, especially regarding sugar content, some amino acids, and choline, Gribbestad says to www.kreft.no.


Follows the contrast substance through the breast

MR imaging, is today one of the most important methods used within cancer diagnosis. Gribbestad has also implemented the new method ”Dynamic contrast enhanced MR” that involves following the contrast substance through the breast by seeing how the MR images change over time.

”As an example, we can see by using these images, how the blood vessel network appears within the cancer tumor and how much of the contrast substance leaks from the blood vessels as it advances in the circulatory system. Thereby, we can also determine quite accurately if the tumor is cancerous or not. The blood vessel network is as a rule greater in the cancer tumor than in a benign one. The blood vessels in a cancer tumor also leak more than in a benign tumor,” says Gribbestad

MR may be best for young women

Gribbestad has shown in her thesis that these methods function well in the examination of patients. She believes that this method can play an important role in the diagnosis and evaluation of the treatment results in breast cancer patients.

”It would be favorable to use MR images in the diagnosis of certain breast cancer patients, for example women who have an inherited risk of breast cancer in their families. These young women are followed closely today, but when it concerns examining the breast tissue in younger women, MR images may be superior in giving a more precise diagnosis than ordinary mammography. It can also be of benefit in cases where mammography is not accurate enough.

The MRS method monitors treatment

”MR spectroscopy, which shows the biochemical compositions in the tumor, also can be an important aid in surveying the treatment of breast cancer patients. The method is also applicable in seeing which effect the treatment has at a biochemical level. We hope that this means that the effect of the treatment can be measured before one can see the effect on the tumor itself,” Gribbestad says.

Widens the possibilities

The thesis shows how MRS can be used to study tissue samples and thereby supplement the microscope which studies cells, and the microarrays that study genetics.


Translation: Kreft = cancer


Questions?
If you have any questions, please contact the Norwegian Cancer Society´s editorial office:
redaksjonen@kreft.no

Barbara Mortensen | EurekAlert!
Further information:
http://www.kreft.no

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>