Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology separates cancer from benign tumors

04.11.2002


A group of researchers in Trondheim, Norway, are the first in the world to use in vivo magnetic resonance spectroscopy (MRS) to separate benign tumors from cancer. Ingrid Susann Gribbestad shows, in her recently published thesis, how one can discover breast cancer and monitor the treatment by using this new technology. The work is financed by the Norwegian Cancer Society and the Research Council of Norway.



www.kreft.no: The research behind this thesis was done at the Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology. The results also showed how MRS can be used to map metabolism connections in the breast.

” We are the first research group in the world who has used magnetic resonance spectroscopy (MRS) to map which chemical substances exist in the cancerous tumor compared to the surrounding healthy tissue. The finds in 30 patients show several differences, especially regarding sugar content, some amino acids, and choline, Gribbestad says to www.kreft.no.


Follows the contrast substance through the breast

MR imaging, is today one of the most important methods used within cancer diagnosis. Gribbestad has also implemented the new method ”Dynamic contrast enhanced MR” that involves following the contrast substance through the breast by seeing how the MR images change over time.

”As an example, we can see by using these images, how the blood vessel network appears within the cancer tumor and how much of the contrast substance leaks from the blood vessels as it advances in the circulatory system. Thereby, we can also determine quite accurately if the tumor is cancerous or not. The blood vessel network is as a rule greater in the cancer tumor than in a benign one. The blood vessels in a cancer tumor also leak more than in a benign tumor,” says Gribbestad

MR may be best for young women

Gribbestad has shown in her thesis that these methods function well in the examination of patients. She believes that this method can play an important role in the diagnosis and evaluation of the treatment results in breast cancer patients.

”It would be favorable to use MR images in the diagnosis of certain breast cancer patients, for example women who have an inherited risk of breast cancer in their families. These young women are followed closely today, but when it concerns examining the breast tissue in younger women, MR images may be superior in giving a more precise diagnosis than ordinary mammography. It can also be of benefit in cases where mammography is not accurate enough.

The MRS method monitors treatment

”MR spectroscopy, which shows the biochemical compositions in the tumor, also can be an important aid in surveying the treatment of breast cancer patients. The method is also applicable in seeing which effect the treatment has at a biochemical level. We hope that this means that the effect of the treatment can be measured before one can see the effect on the tumor itself,” Gribbestad says.

Widens the possibilities

The thesis shows how MRS can be used to study tissue samples and thereby supplement the microscope which studies cells, and the microarrays that study genetics.


Translation: Kreft = cancer


Questions?
If you have any questions, please contact the Norwegian Cancer Society´s editorial office:
redaksjonen@kreft.no

Barbara Mortensen | EurekAlert!
Further information:
http://www.kreft.no

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>