Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailor-made Cancer Drugs: Wave of the Future?

28.10.2002


Washington University chemist offers radical new strategy in fight against cancer



Today, even the best cancer treatments kill about as many healthy cells as they do cancer cells but John-Stephen A. Taylor, Ph.D., professor of chemistry at Washington University in St. Louis, has a plan to improve that ratio. Over the last several years, Taylor has begun to lay the conceptual and experimental groundwork for a radical new strategy for chemotherapy -- one that turns existing drugs into medicinal "smart bombs," if you will.

All DNA is formed of three basic components: a phosphate and a sugar, which combine to form the sides of the double helix "ladder," and a base that forms the ladder’s "rungs." All variances in DNA, including cancerous mutations, are the result of unique sequencing of the four types of bases, denoted A, G, C and T.


Taylor’s approach, described as "nucleic acid-triggered catalytic drug release," is essentially a sophisticated drug releasing system, one that is able to recognize and use cancerous sequences as triggering mechanisms for the very drugs that fight them.

"The beauty of this system is that it could use already-approved FDA drugs," Taylor explained. "So all I have to worry about is getting FDA approval on the general releasing mechanism, and then I can incorporate whatever anticancer drugs are currently on the market."

Taylor discussed his work at the 40th annual New Horizons in Science Briefing, a function of the Council for the Advancement of Science Writing. He spoke Oct. 27, 2002 at Washington University in St. Louis, which hosted the event.

Guiding drugs to their ’parking spot’

In nucleic acids, Nature has already determined the rules of base pairing -- A binds with T and G pairs with C -- a system called "Watson-Crick base-pairing," named for the discoverers of the double helix. Recent advances in biotechnology have given doctors the ability to profile a patient’s genetic information, taken during a biopsy, using something called a DNA chip, which can identify unique or uniquely overexpressed messenger RNA (mRNA). Messenger RNA is a single-stranded RNA molecule that encodes information to make a protein, using the same bases as DNA except that U replaces T. Taylor’s idea is to employ this information as a genetic roadmap, guiding drug components to where they should "park" amongst the millions of base pair "spaces."

Taylor’s system is built on three components: a "prodrug," or a dormant form of a drug; a catalyst that activates the prodrug; and a nucleic acid triggering sequence, designed to match and interlock with a unique or uniquely overexpressed strand of RNA in cancerous cells. The RNA binding drug components will be fashioned out of Peptide Nucleic Acid (PNA), which is identical to DNA, but replaces the sugar backbone with a "peptide" or protein backbone. The benefit is that a single strand of RNA actually binds tighter to a strand of PNA than it does to itself.

So, the prodrug and the catalytic components each contain a PNA strand that is complementary to the cancer cell’s mRNA, allowing them to bind right next to one another in the cancer cell. This close proximity enables a chemical reaction to occur between them, resulting in the release of a cytotoxic drug which kills the cancer cell. Although the medication might encounter healthy cells in its travels, it would not harm them because the RNA triggering sequence would not be present, or else present in a much lower amount, and the drug could not be released.

This new "rational" design doesn’t stop there -- it could be the answer to all sorts of viral diseases such as AIDS, hepatitis and herpes, and could even help guard against new biologically engineered viruses that we haven’t yet imagined.

"Here’s my vision of the future," Taylor said. "You go to a doctor’s office and take a biopsy, which is then run through a DNA chip analysis machine allowing the appropriated triggering sequence to be identified. This information is then passed to an automated synthesis machine and, iIdeally, the catalytic and prodrug components can be synthesized and administered to you within hours."

In related work, Taylor said he will be using overexpressed RNA sequences to help target drugs in research with Washington University colleague Karen Wooley, Ph.D., associate professor of chemistry, and other collaborators. The group hopes to splice Taylor’s RNA-docking molecules to Wooley’s new breed of nanoparticles for on-the-mark, stay-put delivery of diagnostic and disease-fighting agents.

Questions

Contact: Tony Fitzpatrick, senior science editor, Washington University in St. Louis, (314) 935-5272; tony_fitzpatrick@aismail.wustl.edu

Carolyn Jones Otten | EurekAlert!
Further information:
http://news-info.wustl.edu
http://dbbs.wustl.edu/Rib/Taylor.html
http://news-info.wustl.edu/feature/archive/science/dna.html

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>