Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailor-made Cancer Drugs: Wave of the Future?

28.10.2002


Washington University chemist offers radical new strategy in fight against cancer



Today, even the best cancer treatments kill about as many healthy cells as they do cancer cells but John-Stephen A. Taylor, Ph.D., professor of chemistry at Washington University in St. Louis, has a plan to improve that ratio. Over the last several years, Taylor has begun to lay the conceptual and experimental groundwork for a radical new strategy for chemotherapy -- one that turns existing drugs into medicinal "smart bombs," if you will.

All DNA is formed of three basic components: a phosphate and a sugar, which combine to form the sides of the double helix "ladder," and a base that forms the ladder’s "rungs." All variances in DNA, including cancerous mutations, are the result of unique sequencing of the four types of bases, denoted A, G, C and T.


Taylor’s approach, described as "nucleic acid-triggered catalytic drug release," is essentially a sophisticated drug releasing system, one that is able to recognize and use cancerous sequences as triggering mechanisms for the very drugs that fight them.

"The beauty of this system is that it could use already-approved FDA drugs," Taylor explained. "So all I have to worry about is getting FDA approval on the general releasing mechanism, and then I can incorporate whatever anticancer drugs are currently on the market."

Taylor discussed his work at the 40th annual New Horizons in Science Briefing, a function of the Council for the Advancement of Science Writing. He spoke Oct. 27, 2002 at Washington University in St. Louis, which hosted the event.

Guiding drugs to their ’parking spot’

In nucleic acids, Nature has already determined the rules of base pairing -- A binds with T and G pairs with C -- a system called "Watson-Crick base-pairing," named for the discoverers of the double helix. Recent advances in biotechnology have given doctors the ability to profile a patient’s genetic information, taken during a biopsy, using something called a DNA chip, which can identify unique or uniquely overexpressed messenger RNA (mRNA). Messenger RNA is a single-stranded RNA molecule that encodes information to make a protein, using the same bases as DNA except that U replaces T. Taylor’s idea is to employ this information as a genetic roadmap, guiding drug components to where they should "park" amongst the millions of base pair "spaces."

Taylor’s system is built on three components: a "prodrug," or a dormant form of a drug; a catalyst that activates the prodrug; and a nucleic acid triggering sequence, designed to match and interlock with a unique or uniquely overexpressed strand of RNA in cancerous cells. The RNA binding drug components will be fashioned out of Peptide Nucleic Acid (PNA), which is identical to DNA, but replaces the sugar backbone with a "peptide" or protein backbone. The benefit is that a single strand of RNA actually binds tighter to a strand of PNA than it does to itself.

So, the prodrug and the catalytic components each contain a PNA strand that is complementary to the cancer cell’s mRNA, allowing them to bind right next to one another in the cancer cell. This close proximity enables a chemical reaction to occur between them, resulting in the release of a cytotoxic drug which kills the cancer cell. Although the medication might encounter healthy cells in its travels, it would not harm them because the RNA triggering sequence would not be present, or else present in a much lower amount, and the drug could not be released.

This new "rational" design doesn’t stop there -- it could be the answer to all sorts of viral diseases such as AIDS, hepatitis and herpes, and could even help guard against new biologically engineered viruses that we haven’t yet imagined.

"Here’s my vision of the future," Taylor said. "You go to a doctor’s office and take a biopsy, which is then run through a DNA chip analysis machine allowing the appropriated triggering sequence to be identified. This information is then passed to an automated synthesis machine and, iIdeally, the catalytic and prodrug components can be synthesized and administered to you within hours."

In related work, Taylor said he will be using overexpressed RNA sequences to help target drugs in research with Washington University colleague Karen Wooley, Ph.D., associate professor of chemistry, and other collaborators. The group hopes to splice Taylor’s RNA-docking molecules to Wooley’s new breed of nanoparticles for on-the-mark, stay-put delivery of diagnostic and disease-fighting agents.

Questions

Contact: Tony Fitzpatrick, senior science editor, Washington University in St. Louis, (314) 935-5272; tony_fitzpatrick@aismail.wustl.edu

Carolyn Jones Otten | EurekAlert!
Further information:
http://news-info.wustl.edu
http://dbbs.wustl.edu/Rib/Taylor.html
http://news-info.wustl.edu/feature/archive/science/dna.html

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>