Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype developed for ultrasonic patch to deliver insulin

23.10.2002


Penn State engineers have developed a prototype for an ultrasound insulin delivery system that is about the size and weight of a matchbook that can be worn as a patch on the body.



Dr. Nadine Barrie Smith, assistant professor of bioengineering, says, "The new Penn State ultrasound patch, which operates in the same frequency range as the large commercially available sonic drug delivery devices, is about an inch-and-a-half by an inch-and-a-half in size and weighs less than an ounce. Commercially available sonicators currently have a probe about eight inches long which weighs over two pounds."

Experiments with human skin and with live rats have shown that the new ultrasound patch delivers therapeutically effective doses of insulin.


The new prototype is described in detail in "Transducer Design for a Portable Ultrasound Enhanced Transdermal Drug-Delivery System," published in the current (October) issue of the IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

The key to the new ultrasound patch is a "cymbal" transducer developed by Dr. Robert Newnham, the Alcoa professor emeritus of solid state science. The transducer produces the sound waves that drive the medication through the skin and into the blood stream. The cymbal transducer consists of a thin disk of piezoelectric ceramic material sandwiched between titanium end caps shaped like cymbals. Four of these transducers are used in the prototype.

A thin reservoir of insulin is placed in front of the cymbal transducer and when a current is applied, sound waves just above the level of human hearing push the medication through the skin and into the blood vessels.

Smith notes, "Our experiments with rats show that an exposure of 20 minutes produced the same result as a 60-minute exposure. So, we are hopeful that, eventually, we may be able to tune the system so that one to five minutes of exposure may be enough."

Currently, diabetics must either inject insulin via hypodermic needles or use a mini-pump with a catheter that remains implanted in their body. Ultrasound offers a less painful and invasive alternative.

Besides insulin, some medications used to treat AIDS, pain relievers, asthma drugs, and hormones are deliverable via ultrasound, Smith adds. Those medications and, perhaps, some others that cannot be taken by mouth, are candidates for administration via the new ultrasound patch.


Her co-authors are Emiliano Maione, graduate student; Dr. K. Kirk Shung, professor of bioengineering; Dr. Richard J. Meyer, research associate at Penn State’s Applied Research Laboratory (ARL); Dr. Jack W. Hughes, ARL Senior scientist and professor of acoustics; Newnham; and Smith. The rat experiments are described in "Ultrasound Mediated Transdermal in vivo Transport of Insulin with Low Profile Cymbal Arrays," presented this month at the IEEE 2002 Ultrasonics Symposium in Munich, Germany. The authors are Seungjun Lee, graduate student, Smith and Shung.

The research was supported, in part, with laboratory start-up funds provided to Smith by the University.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>