Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ouch! The receptors mediating acidic pain sensation

22.10.2002


When we feel pain in response to harmful stimuli it is the result of messages sent from pain sensors in the periphery of the body to the brain. These pain sensors – or nociceptors – often lie beneath the skin and detect and signal the presence of tissue-damaging stimuli or the existence of tissue damage. One particular nociceptor, vanilloid receptor-1 (VR1), relays sensory messages to the brain in response to thermal and painful chemical stimuli and is generally regarded as the major pain sensor.



In conditions such as arthritis or infection, the tissue involved at these sites becomes acidic. While normal human tissue has a neutral pH of approximately 6.5 - 7.5 (similar to water), tissue acidosis can cause a drop in cellular pH below 6.0 closer to that of household vinegar. When the cellular environment becomes acidic, both VR1 and a second nociceptor - acid sensing ion channels (ASICs) - are activated. In previous experiments in mice, scientists have found that the activation of VR1 requires extremely severe acidification - pH less than 6.0. This suggests that another pain sensor plays a role in nociception, specifically at pH levels greater than 6.0. Despite experimental data revealing that mouse neurons lacking ASICs are severely deficient in their responses to acidic stimuli, controversy remains about the function of ASICs in mammals.

In a study reported in the October 21 issue of the Journal of Clinical Investigation (JCI) by Shinya Ugawa and colleagues from the Nagoya City University Medical School, Japan, the authors demonstrated that both VR1 and ASICs are involved in the sensing of acid-evoked pain in humans and that each type of nociceptor mediates this pain perception at very specific pH ranges. The authors infused solutions of varying pH levels under the skin of the underside of the upper forearm of healthy male volunteers who were subsequently asked to estimate the intensity of the induced pain on a 0-10 scale. To determine which particular nociceptor was activated at each pH level, the authors systematically blocked ASICs-mediated pain perception with the ASICs inhibitor amiloride or VR1-mediated pain perception with the VR1-inhibitor capsazepine and then recorded the intensity of pain indicated by the subject in response to the solutions of various pH. Ugawa and colleagues found that amiloride potently blocked pain induced by solutions with a pH greater than 6.0, while capsazepine did not. At pH levels below 5.0, amiloride was less effective in reducing pain and capsazepine had a partial blocking effect.


These results demonstrated that ASICs, and not VR1, function as acid sensors within the pathophysiologically relevant pH range 6.0 – 7.2, and that the ASICs inhibitor amiloride may be a useful analgesic for the treatment of localized pain within this range.


CONTACT:

Shinya Ugawa
Department of Anatomy II
Nagoya City University Medical School
1 Kawasumi, Mizuho-cho,
Mizuho-ku, Nagoya 467-8601
JAPAN
TEL: 81-52-853-8126
FAX: 81-52-852-8887
E-mail: ugawa@med.nagoya-cu.ac.jp

Brooke Grindlinger, PhD | EurekAlert!
Further information:
http://www.jci.org/

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
29.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>