Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ouch! The receptors mediating acidic pain sensation

22.10.2002


When we feel pain in response to harmful stimuli it is the result of messages sent from pain sensors in the periphery of the body to the brain. These pain sensors – or nociceptors – often lie beneath the skin and detect and signal the presence of tissue-damaging stimuli or the existence of tissue damage. One particular nociceptor, vanilloid receptor-1 (VR1), relays sensory messages to the brain in response to thermal and painful chemical stimuli and is generally regarded as the major pain sensor.



In conditions such as arthritis or infection, the tissue involved at these sites becomes acidic. While normal human tissue has a neutral pH of approximately 6.5 - 7.5 (similar to water), tissue acidosis can cause a drop in cellular pH below 6.0 closer to that of household vinegar. When the cellular environment becomes acidic, both VR1 and a second nociceptor - acid sensing ion channels (ASICs) - are activated. In previous experiments in mice, scientists have found that the activation of VR1 requires extremely severe acidification - pH less than 6.0. This suggests that another pain sensor plays a role in nociception, specifically at pH levels greater than 6.0. Despite experimental data revealing that mouse neurons lacking ASICs are severely deficient in their responses to acidic stimuli, controversy remains about the function of ASICs in mammals.

In a study reported in the October 21 issue of the Journal of Clinical Investigation (JCI) by Shinya Ugawa and colleagues from the Nagoya City University Medical School, Japan, the authors demonstrated that both VR1 and ASICs are involved in the sensing of acid-evoked pain in humans and that each type of nociceptor mediates this pain perception at very specific pH ranges. The authors infused solutions of varying pH levels under the skin of the underside of the upper forearm of healthy male volunteers who were subsequently asked to estimate the intensity of the induced pain on a 0-10 scale. To determine which particular nociceptor was activated at each pH level, the authors systematically blocked ASICs-mediated pain perception with the ASICs inhibitor amiloride or VR1-mediated pain perception with the VR1-inhibitor capsazepine and then recorded the intensity of pain indicated by the subject in response to the solutions of various pH. Ugawa and colleagues found that amiloride potently blocked pain induced by solutions with a pH greater than 6.0, while capsazepine did not. At pH levels below 5.0, amiloride was less effective in reducing pain and capsazepine had a partial blocking effect.


These results demonstrated that ASICs, and not VR1, function as acid sensors within the pathophysiologically relevant pH range 6.0 – 7.2, and that the ASICs inhibitor amiloride may be a useful analgesic for the treatment of localized pain within this range.


CONTACT:

Shinya Ugawa
Department of Anatomy II
Nagoya City University Medical School
1 Kawasumi, Mizuho-cho,
Mizuho-ku, Nagoya 467-8601
JAPAN
TEL: 81-52-853-8126
FAX: 81-52-852-8887
E-mail: ugawa@med.nagoya-cu.ac.jp

Brooke Grindlinger, PhD | EurekAlert!
Further information:
http://www.jci.org/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>