Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ouch! The receptors mediating acidic pain sensation

22.10.2002


When we feel pain in response to harmful stimuli it is the result of messages sent from pain sensors in the periphery of the body to the brain. These pain sensors – or nociceptors – often lie beneath the skin and detect and signal the presence of tissue-damaging stimuli or the existence of tissue damage. One particular nociceptor, vanilloid receptor-1 (VR1), relays sensory messages to the brain in response to thermal and painful chemical stimuli and is generally regarded as the major pain sensor.



In conditions such as arthritis or infection, the tissue involved at these sites becomes acidic. While normal human tissue has a neutral pH of approximately 6.5 - 7.5 (similar to water), tissue acidosis can cause a drop in cellular pH below 6.0 closer to that of household vinegar. When the cellular environment becomes acidic, both VR1 and a second nociceptor - acid sensing ion channels (ASICs) - are activated. In previous experiments in mice, scientists have found that the activation of VR1 requires extremely severe acidification - pH less than 6.0. This suggests that another pain sensor plays a role in nociception, specifically at pH levels greater than 6.0. Despite experimental data revealing that mouse neurons lacking ASICs are severely deficient in their responses to acidic stimuli, controversy remains about the function of ASICs in mammals.

In a study reported in the October 21 issue of the Journal of Clinical Investigation (JCI) by Shinya Ugawa and colleagues from the Nagoya City University Medical School, Japan, the authors demonstrated that both VR1 and ASICs are involved in the sensing of acid-evoked pain in humans and that each type of nociceptor mediates this pain perception at very specific pH ranges. The authors infused solutions of varying pH levels under the skin of the underside of the upper forearm of healthy male volunteers who were subsequently asked to estimate the intensity of the induced pain on a 0-10 scale. To determine which particular nociceptor was activated at each pH level, the authors systematically blocked ASICs-mediated pain perception with the ASICs inhibitor amiloride or VR1-mediated pain perception with the VR1-inhibitor capsazepine and then recorded the intensity of pain indicated by the subject in response to the solutions of various pH. Ugawa and colleagues found that amiloride potently blocked pain induced by solutions with a pH greater than 6.0, while capsazepine did not. At pH levels below 5.0, amiloride was less effective in reducing pain and capsazepine had a partial blocking effect.


These results demonstrated that ASICs, and not VR1, function as acid sensors within the pathophysiologically relevant pH range 6.0 – 7.2, and that the ASICs inhibitor amiloride may be a useful analgesic for the treatment of localized pain within this range.


CONTACT:

Shinya Ugawa
Department of Anatomy II
Nagoya City University Medical School
1 Kawasumi, Mizuho-cho,
Mizuho-ku, Nagoya 467-8601
JAPAN
TEL: 81-52-853-8126
FAX: 81-52-852-8887
E-mail: ugawa@med.nagoya-cu.ac.jp

Brooke Grindlinger, PhD | EurekAlert!
Further information:
http://www.jci.org/

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>