Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at Scripps Research develop new technology to map spread of malarial drug resistance

04.10.2002


Scientists at The Scripps Research Institute (TSRI), Harvard University and the Genomics Institute of the Novartis Research Foundation have found a way to use a relatively new but readily available technology to quickly detect markers in the DNA of the most deadly type of malaria pathogen.

The technology could enable scientists and public health workers to identify the particular strain of malaria during an outbreak and determine if it is drug resistant or not.

"One of the reasons for the resurgence of malaria in Africa and in other parts of the world is the spread of drug resistance," says Assistant Professor Elizabeth Winzeler, Ph.D., who is in the Department of Cell Biology at TSRI and the lead author of the study described in the latest issue of the journal Science.



The work should make it easier to follow the spread of drug resistance around the world and assist health ministries in countries where malaria is a problem to come up with strategies to thwart this spread.

Malaria is a nasty and often fatal disease, which may lead to kidney failure, seizures, permanent neurological damage, coma, and death. There are four types of Plasmodium parasites that cause the disease, of which falciparum is the most deadly.

Despite a century of effort to globally control malaria, the disease remains endemic in many parts of the world. With some 40 percent of the world’s population living in these areas, the need for more effective vaccines is profound. Worse, strains of Plasmodium falciparum resistant to drugs used to treat malaria have evolved over the last few decades.

The specter of drug resistance is particularly worrisome because drug resistance can spread through the mating of Plasmodium parasites. And drug-resistant Plasmodium falciparum is more deadly and more expensive to treat. Worse, a drug-resistant strain could lead to the re-emergence of malaria in parts of the world where it no longer exists--except for the occasional imported case--such as the United States.

One of the best tools for fighting any infectious disease is to track it and fight it where it occurs. And one of the best ways to determine the origin of a particular malaria infection and to map the spread of infection is to identify what are called single nucleotide polymorphisms (SNPs).

Polymorphisms, the genetic variability among various isolates of one organism, are responsible for drug resistance in malaria pathogens. In order to follow the spread of drug resistance around the world, one needs to look at how these markers spread as well.

In the past, if scientists wanted to detect SNPs, they would pick one particular gene and sequence it, a time-consuming process. For instance, finding enough polymorphisms to map the gene mutation responsible for resistance to the drug chloroquine, one of the traditional drugs given to patients with malaria, took several years and millions of dollars to determine.

"Now," says Winzeler, "we have demonstrated that you can detect thousands of SNPs all at the same time by doing a simple reaction."

The reaction involves taking DNA from the malaria parasite, chopping it into fragments, and plopping the mixture of fragmented DNA on a "gene chip"-- a glass or silicon wafer that has thousands of short pieces of DNA attached to it.

DNA chips have become a standard tool for genomics research in the last couple of years, and scientists can quite easily put a large number of different oligonucleotide pieces--even all the known genes in an organism--on a single chip. When applying a sample that contains DNA to the chip, genes that are present in the sample will "hybridize" or bind to complementary oligonucleotides on the chip. By looking to see which chip oligonucleotides have DNA bound, scientists know which genes were being expressed in the sample.

But Winzeler used this technology in a novel way. She compared the DNA of Plasmodium falciparum parasites that were resistant to drugs to those that were not and used the differences in the readouts of the gene chips to determine where the SNPs were. Nobody had ever used a gene chip in this way before.

Nor did such a chip exist. Winzeler worked with researchers at the Genomics Institute of the Novartis Research Foundation to create one just for this purpose.

Using putative malaria genes that were identified in the international malaria genome effort, Winzeler took sequences representing 4,000 distinct pieces of these genes on chromosome 2 of the Plasmodium falciparum genome and had a gene chip constructed.

"Having this type of technology and the genome sequenced allows us to look at the genome in a whole new way," says Winzeler. "If you start doing longitudinal studies after you introduce a new drug, you might be able to identify the drug targets or the mechanisms of resistance. If you can start finding the mutations that are associated with drug resistance, then that tells you how to treat patients in the field."

The new technology should also make it possible to do similar research with other organisms, characterizing genetic variability and perhaps conducting population genetics as well. With population genetics, scientists could quickly determine how similar different genomes are to each other and generate estimates of a pathogen’s age or its pattern of spread.

Winzeler found that most of the SNPs were in the DNA of genes that coded for membrane-associated proteins, which is to be expected, since these are the proteins that are on the outer surface of the cell and will endure the greatest selective pressure exerted by host immune systems and drugs.

Significantly, she also found that a number of genes of unknown function were also high in SNPs, which could mean that these unknown genes are also under selective pressure.

"These could represent genes that have important functions in parasite viability or virulence and that warrant further functional characterization," she concludes.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>