Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrong proteins targeted in battle against cancer?

02.10.2002


Lasker recipient James E. Darnell contends drug developers should focus more on ’transcription factor’ proteins



Researchers may be looking for novel cancer drugs in the wrong places, says Rockefeller University Professor James E. Darnell, Jr., M.D., in an article in this month’s Nature Reviews Cancer.

Darnell, who received the 2002 Albert Lasker Award for Special Achievement in Medical Science, argues that drug development research should focus more on a specific group of proteins - called transcription factors - known to be overactive in almost all human cancers.


"The facts indicate that a limited number of transcription factors are indeed overactive in many cancers and that these overactive proteins themselves are appropriate drug targets," says Darnell, head of the Laboratory of Molecular Cell Biology at Rockefeller and co-author of the popular textbook Molecular Cell Biology.

These transcription factors include STAT3, discovered by Darnell and colleagues in 1994, STAT5, NF-kappaB, B-catenin, Notch, GLI and c-JUN - all of which play significant roles in a wide variety of cancers.

According to Darnell, drug developers continue to largely ignore these seemingly universal molecules of cancer because, unlike other cancer-causing proteins called protein kinases, transcription factors do not posses "active sites" or pockets that can be easily fitted with small inhibitory drugs.

Instead, drugs designed against transcription factors would have to target protein-protein interactions - which, because of their larger surface areas, are much harder to disrupt.

Still, Darnell argues that, despite inherent obstacles, such an approach could potentially yield novel cancer therapeutics.

"After all," he asks, "What is the benefit to medicine in all the twenty-first century promise of proteomics if we cannot selectively inhibit protein-protein interactions?"

Many of the transcription factors involved in cancer normally allow a healthy cell to respond to signals from the external environment by activating the "expression" of certain genes, which then leads to the production of new proteins. In cancer - which is characterized by cell growth gone awry - genetic mutations cause these proteins, also referred to as "oncogenic proteins," to become unusually active.

Therefore, drugs designed to block or decrease their surplus activity might effectively treat this disease.

"Transcription factors are attractive targets because they are both less numerous than other signaling activators and are at a focal point of many cancer pathways," says Darnell.

"Like kicking Achilles in the heel, striking at these targets would constitute a more global approach to fighting cancer."

In the past, drug developers in search of cancer therapeutics have placed a large focus on cancer-causing molecules called protein kinases, primarily because their active sites - tiny crevices where small molecules normally bind and activate the protein - can be easily blocked with small molecule drugs. The drug Gleevec, for example, can temporarily treat chronic myeloid leukemia by fitting into and plugging up the active site of a protein kinase, called the Ableson kinase, associated with this disease.

But, according to Darnell, this approach has two main drawbacks. First, as is the case with Gleevec, resistance to the drugs can develop, and, second, each of the protein kinases tends to be associated with only a limited number of cancer types.

Darnell argues that both of these obstacles could possibly be overcome by instead targeting certain transcription factors. He says that these proteins should not develop resistance to drugs as fast as protein kinases, and, because they are common to many cancers, drugs designed to block them should work against a diverse range of cancer types.

The final challenge is then how to target molecules that lack the convenient active sites of protein kinases. Drugs directed against transcription factors would have to prevent them from binding to one of their two primary molecular targets: DNA or proteins. To turn on specific genes, transcription factors must bind to other proteins as well as to DNA.

Since past efforts to develop drugs that disrupt DNA-protein interactions have failed, Darnell believes that targeting protein-protein interactions is the next logical step.

"With the availability of robotic screening procedures, huge chemical libraries need to be screened for small molecules that target any of the specific protein-protein interactions of transcription factors," he says.

"Even though this approach is more difficult," he adds, "It has proved practical in one preliminary case, and furthermore many inventive technologies from chemistry labs around the world give hope that this approach has great possibilities."

Whitney Clavin | EurekAlert!
Further information:
http://www.rockefeller.edu/

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>