Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrong proteins targeted in battle against cancer?

02.10.2002


Lasker recipient James E. Darnell contends drug developers should focus more on ’transcription factor’ proteins



Researchers may be looking for novel cancer drugs in the wrong places, says Rockefeller University Professor James E. Darnell, Jr., M.D., in an article in this month’s Nature Reviews Cancer.

Darnell, who received the 2002 Albert Lasker Award for Special Achievement in Medical Science, argues that drug development research should focus more on a specific group of proteins - called transcription factors - known to be overactive in almost all human cancers.


"The facts indicate that a limited number of transcription factors are indeed overactive in many cancers and that these overactive proteins themselves are appropriate drug targets," says Darnell, head of the Laboratory of Molecular Cell Biology at Rockefeller and co-author of the popular textbook Molecular Cell Biology.

These transcription factors include STAT3, discovered by Darnell and colleagues in 1994, STAT5, NF-kappaB, B-catenin, Notch, GLI and c-JUN - all of which play significant roles in a wide variety of cancers.

According to Darnell, drug developers continue to largely ignore these seemingly universal molecules of cancer because, unlike other cancer-causing proteins called protein kinases, transcription factors do not posses "active sites" or pockets that can be easily fitted with small inhibitory drugs.

Instead, drugs designed against transcription factors would have to target protein-protein interactions - which, because of their larger surface areas, are much harder to disrupt.

Still, Darnell argues that, despite inherent obstacles, such an approach could potentially yield novel cancer therapeutics.

"After all," he asks, "What is the benefit to medicine in all the twenty-first century promise of proteomics if we cannot selectively inhibit protein-protein interactions?"

Many of the transcription factors involved in cancer normally allow a healthy cell to respond to signals from the external environment by activating the "expression" of certain genes, which then leads to the production of new proteins. In cancer - which is characterized by cell growth gone awry - genetic mutations cause these proteins, also referred to as "oncogenic proteins," to become unusually active.

Therefore, drugs designed to block or decrease their surplus activity might effectively treat this disease.

"Transcription factors are attractive targets because they are both less numerous than other signaling activators and are at a focal point of many cancer pathways," says Darnell.

"Like kicking Achilles in the heel, striking at these targets would constitute a more global approach to fighting cancer."

In the past, drug developers in search of cancer therapeutics have placed a large focus on cancer-causing molecules called protein kinases, primarily because their active sites - tiny crevices where small molecules normally bind and activate the protein - can be easily blocked with small molecule drugs. The drug Gleevec, for example, can temporarily treat chronic myeloid leukemia by fitting into and plugging up the active site of a protein kinase, called the Ableson kinase, associated with this disease.

But, according to Darnell, this approach has two main drawbacks. First, as is the case with Gleevec, resistance to the drugs can develop, and, second, each of the protein kinases tends to be associated with only a limited number of cancer types.

Darnell argues that both of these obstacles could possibly be overcome by instead targeting certain transcription factors. He says that these proteins should not develop resistance to drugs as fast as protein kinases, and, because they are common to many cancers, drugs designed to block them should work against a diverse range of cancer types.

The final challenge is then how to target molecules that lack the convenient active sites of protein kinases. Drugs directed against transcription factors would have to prevent them from binding to one of their two primary molecular targets: DNA or proteins. To turn on specific genes, transcription factors must bind to other proteins as well as to DNA.

Since past efforts to develop drugs that disrupt DNA-protein interactions have failed, Darnell believes that targeting protein-protein interactions is the next logical step.

"With the availability of robotic screening procedures, huge chemical libraries need to be screened for small molecules that target any of the specific protein-protein interactions of transcription factors," he says.

"Even though this approach is more difficult," he adds, "It has proved practical in one preliminary case, and furthermore many inventive technologies from chemistry labs around the world give hope that this approach has great possibilities."

Whitney Clavin | EurekAlert!
Further information:
http://www.rockefeller.edu/

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>