Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant Reduces Brain Damage in Stroke Model

01.10.2002


New research shows that a synthetic antioxidant can reduce brain damage by more than 40 percent in an animal model of stroke when given seven and a half hours after the stroke begins. Researchers at National Jewish Medical and Research Center and Duke University Medical Center will report their findings in the October issue of the journal Free Radical Biology and Medicine.



"Because the onset of a stroke can be difficult to detect, many patients do not get treatment for several hours," said James Crapo, M.D., co-author and Chairman of the Department of Medicine at National Jewish. "Our findings suggest that the antioxidant is a promising candidate for stroke therapy because it can prevent damage so many hours after the stroke begins."

Strokes occur when blood supply to the brain is interrupted because blood vessels in the brain either leak or are blocked. Starved of oxygen, the brain cells die. However, cell death continues to occur for many hours, even after blood flow is returned to the brain. Many of the cells that are injured, but not killed by oxygen deprivation, die in the hours following the stroke. Free radicals, highly reactive molecules, kill many of those cells.


The researchers used a synthetic antioxidant, known as AEOL 10150, to neutralize the damaging free radicals and reduce cell death in a mouse model of stroke. AEOL 10150, developed by Dr. Crapo and his colleagues at Duke, mimics the naturally occurring antioxidant superoxide dismutase, but is effective against a wider range of oxygen radicals and lasts longer in the body. Now licensed by Incara Pharmaceuticals Corporation, it has shown promise in preventing damage to cells caused by diabetes and radiation therapy for cancer.

The researchers blocked the middle cerebral artery of rats for 90 minutes. They then injected AEOL 10150 or a placebo into the brains of these mice six hours after the artery had been reopened. The six-hour post-stroke time period has significant clinical relevance. In an unrelated stroke study, 26 percent of patients received treatment within four hours, but 99 percent received treatment within six hours.

When evaluated a week later, animals who received the placebo had an average of 160 cubic millimeters of brain tissue destroyed by the stroke. Animals who received the antioxidant had an average of 92 cubic millimeters of brain tissue destroyed by the stroke, 43 percent less than that the rats who received the placebo.

"There is a significant arc of potentially salvageable tissue surrounding the cells that are killed by the initial stroke," said David S. Warner, M.D., professor of anesthesiology at Duke University Medical Center. "The antioxidant appears to protect this tissue."

The researchers also treated mice with intravenous injections of the antioxidant. Although, this method produced a smaller effect, it reduced both tissue damage and neurological deficit, demonstrating the compound’s ability to cross the blood-brain barrier. Mechanistic studies also showed that the antioxidant significantly altered inflammatory gene expression in tissue.

William Allstetter | EurekAlert!
Further information:
http://www.njc.org/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>