Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant Reduces Brain Damage in Stroke Model

01.10.2002


New research shows that a synthetic antioxidant can reduce brain damage by more than 40 percent in an animal model of stroke when given seven and a half hours after the stroke begins. Researchers at National Jewish Medical and Research Center and Duke University Medical Center will report their findings in the October issue of the journal Free Radical Biology and Medicine.



"Because the onset of a stroke can be difficult to detect, many patients do not get treatment for several hours," said James Crapo, M.D., co-author and Chairman of the Department of Medicine at National Jewish. "Our findings suggest that the antioxidant is a promising candidate for stroke therapy because it can prevent damage so many hours after the stroke begins."

Strokes occur when blood supply to the brain is interrupted because blood vessels in the brain either leak or are blocked. Starved of oxygen, the brain cells die. However, cell death continues to occur for many hours, even after blood flow is returned to the brain. Many of the cells that are injured, but not killed by oxygen deprivation, die in the hours following the stroke. Free radicals, highly reactive molecules, kill many of those cells.


The researchers used a synthetic antioxidant, known as AEOL 10150, to neutralize the damaging free radicals and reduce cell death in a mouse model of stroke. AEOL 10150, developed by Dr. Crapo and his colleagues at Duke, mimics the naturally occurring antioxidant superoxide dismutase, but is effective against a wider range of oxygen radicals and lasts longer in the body. Now licensed by Incara Pharmaceuticals Corporation, it has shown promise in preventing damage to cells caused by diabetes and radiation therapy for cancer.

The researchers blocked the middle cerebral artery of rats for 90 minutes. They then injected AEOL 10150 or a placebo into the brains of these mice six hours after the artery had been reopened. The six-hour post-stroke time period has significant clinical relevance. In an unrelated stroke study, 26 percent of patients received treatment within four hours, but 99 percent received treatment within six hours.

When evaluated a week later, animals who received the placebo had an average of 160 cubic millimeters of brain tissue destroyed by the stroke. Animals who received the antioxidant had an average of 92 cubic millimeters of brain tissue destroyed by the stroke, 43 percent less than that the rats who received the placebo.

"There is a significant arc of potentially salvageable tissue surrounding the cells that are killed by the initial stroke," said David S. Warner, M.D., professor of anesthesiology at Duke University Medical Center. "The antioxidant appears to protect this tissue."

The researchers also treated mice with intravenous injections of the antioxidant. Although, this method produced a smaller effect, it reduced both tissue damage and neurological deficit, demonstrating the compound’s ability to cross the blood-brain barrier. Mechanistic studies also showed that the antioxidant significantly altered inflammatory gene expression in tissue.

William Allstetter | EurekAlert!
Further information:
http://www.njc.org/

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>