Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh researchers develop a urinary catheter to monitor oxygen delivery to organs

30.09.2002


Monitoring oxygen delivery to organs is vital for treatment of trauma and critical care patients



When treating trauma and critical care patients after severe hemorrhagic shock, hours and days count. That’s why University of Pittsburgh researchers, working with an Israeli physiology professor, saw the need to develop a "smart" urinary catheter - which is typically used for bladder drainage – that they modified in order to provide clinicians with immediate information about the amount of oxygen organs are receiving. Results of animal studies and preliminary results of the catheter’s use in two patients indicate the device is also less invasive than current techniques.

Julio Clavijo, M.D., visiting research associate professor in the division of surgery and critical care medicine at the University of Pittsburgh School of Medicine, presented these findings today at the American Association for the Surgery of Trauma’s 2002 Annual Meeting at the Hilton at Lake Buena Vista in Orlando, Fla.


When a patient suffers from hemorrhagic shock, the massive loss of blood greatly reduces the amount of oxygen delivered to all organs, which can result in organ damage. Current monitoring techniques to assess oxygen delivery in trauma patients are often invasive and not always applicable in the clinical setting.

"By developing better ways to monitor trauma and critical care patients in the intensive care unit we can implement timely decisions regarding their care," said Juan Carlos Puyana, M.D., F.A.C.S., associate professor of surgery and critical care medicine at the University of Pittsburgh School of Medicine and senior author of the study.

The investigators constructed a urinary catheter with a fluorescent-based fiber optic probe that directly measures blood flow and oxygen utilization. This fiber optic probe is of the same type used by neurosurgeons and anesthesiologists to measure oxygen utilization in the brain.

In animal studies of the catheter, the researchers found that during hemorrhage, changes in blood flow and oxygen delivery to the urethra were correlated. These findings suggest that such information about the clinical status of trauma patients could be collected in a more timely basis and monitored by this less invasive means.

"We hope by using technology such as this we can begin to learn more about the mechanisms of trauma and associated organ failure so we can begin to formulate better outcomes for these patients," added Dr. Puyana.

James van Bastelarr, M.D., a medical student at the University of Groningen in the Netherlands, and Avraham Mayevsky, Ph.D., professor of physiology at Bar Ilan University in Ramat Gan Israel were co-authors of this study.

In addition to his appointment at the University of Pittsburgh School of Medicine, Dr. Puyana is also a trauma surgeon at the UPMC Presbyterian Trauma Center, where more than 3,000 patients are treated each year. Since 1987, it has been accredited as a Level I trauma center, the highest certification possible, by the Pennsylvania Trauma Systems Foundation.

Funding for this study was provided by the U.S. Army Medical Research Command through a grant to the Center for Innovation in Minimally Invasive Therapies in Boston.

CONTACT:
Maureen McGaffin
Lisa Rossi
PHONE: (412) 647-3555
FAX: (412) 624-3184
E-MAIL:
McGaffinME@upmc.edu
RossiL@upmc.edu

Maureen McGaffin | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>