Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh researchers develop a urinary catheter to monitor oxygen delivery to organs

30.09.2002


Monitoring oxygen delivery to organs is vital for treatment of trauma and critical care patients



When treating trauma and critical care patients after severe hemorrhagic shock, hours and days count. That’s why University of Pittsburgh researchers, working with an Israeli physiology professor, saw the need to develop a "smart" urinary catheter - which is typically used for bladder drainage – that they modified in order to provide clinicians with immediate information about the amount of oxygen organs are receiving. Results of animal studies and preliminary results of the catheter’s use in two patients indicate the device is also less invasive than current techniques.

Julio Clavijo, M.D., visiting research associate professor in the division of surgery and critical care medicine at the University of Pittsburgh School of Medicine, presented these findings today at the American Association for the Surgery of Trauma’s 2002 Annual Meeting at the Hilton at Lake Buena Vista in Orlando, Fla.


When a patient suffers from hemorrhagic shock, the massive loss of blood greatly reduces the amount of oxygen delivered to all organs, which can result in organ damage. Current monitoring techniques to assess oxygen delivery in trauma patients are often invasive and not always applicable in the clinical setting.

"By developing better ways to monitor trauma and critical care patients in the intensive care unit we can implement timely decisions regarding their care," said Juan Carlos Puyana, M.D., F.A.C.S., associate professor of surgery and critical care medicine at the University of Pittsburgh School of Medicine and senior author of the study.

The investigators constructed a urinary catheter with a fluorescent-based fiber optic probe that directly measures blood flow and oxygen utilization. This fiber optic probe is of the same type used by neurosurgeons and anesthesiologists to measure oxygen utilization in the brain.

In animal studies of the catheter, the researchers found that during hemorrhage, changes in blood flow and oxygen delivery to the urethra were correlated. These findings suggest that such information about the clinical status of trauma patients could be collected in a more timely basis and monitored by this less invasive means.

"We hope by using technology such as this we can begin to learn more about the mechanisms of trauma and associated organ failure so we can begin to formulate better outcomes for these patients," added Dr. Puyana.

James van Bastelarr, M.D., a medical student at the University of Groningen in the Netherlands, and Avraham Mayevsky, Ph.D., professor of physiology at Bar Ilan University in Ramat Gan Israel were co-authors of this study.

In addition to his appointment at the University of Pittsburgh School of Medicine, Dr. Puyana is also a trauma surgeon at the UPMC Presbyterian Trauma Center, where more than 3,000 patients are treated each year. Since 1987, it has been accredited as a Level I trauma center, the highest certification possible, by the Pennsylvania Trauma Systems Foundation.

Funding for this study was provided by the U.S. Army Medical Research Command through a grant to the Center for Innovation in Minimally Invasive Therapies in Boston.

CONTACT:
Maureen McGaffin
Lisa Rossi
PHONE: (412) 647-3555
FAX: (412) 624-3184
E-MAIL:
McGaffinME@upmc.edu
RossiL@upmc.edu

Maureen McGaffin | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>