Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh researchers develop a urinary catheter to monitor oxygen delivery to organs

30.09.2002


Monitoring oxygen delivery to organs is vital for treatment of trauma and critical care patients



When treating trauma and critical care patients after severe hemorrhagic shock, hours and days count. That’s why University of Pittsburgh researchers, working with an Israeli physiology professor, saw the need to develop a "smart" urinary catheter - which is typically used for bladder drainage – that they modified in order to provide clinicians with immediate information about the amount of oxygen organs are receiving. Results of animal studies and preliminary results of the catheter’s use in two patients indicate the device is also less invasive than current techniques.

Julio Clavijo, M.D., visiting research associate professor in the division of surgery and critical care medicine at the University of Pittsburgh School of Medicine, presented these findings today at the American Association for the Surgery of Trauma’s 2002 Annual Meeting at the Hilton at Lake Buena Vista in Orlando, Fla.


When a patient suffers from hemorrhagic shock, the massive loss of blood greatly reduces the amount of oxygen delivered to all organs, which can result in organ damage. Current monitoring techniques to assess oxygen delivery in trauma patients are often invasive and not always applicable in the clinical setting.

"By developing better ways to monitor trauma and critical care patients in the intensive care unit we can implement timely decisions regarding their care," said Juan Carlos Puyana, M.D., F.A.C.S., associate professor of surgery and critical care medicine at the University of Pittsburgh School of Medicine and senior author of the study.

The investigators constructed a urinary catheter with a fluorescent-based fiber optic probe that directly measures blood flow and oxygen utilization. This fiber optic probe is of the same type used by neurosurgeons and anesthesiologists to measure oxygen utilization in the brain.

In animal studies of the catheter, the researchers found that during hemorrhage, changes in blood flow and oxygen delivery to the urethra were correlated. These findings suggest that such information about the clinical status of trauma patients could be collected in a more timely basis and monitored by this less invasive means.

"We hope by using technology such as this we can begin to learn more about the mechanisms of trauma and associated organ failure so we can begin to formulate better outcomes for these patients," added Dr. Puyana.

James van Bastelarr, M.D., a medical student at the University of Groningen in the Netherlands, and Avraham Mayevsky, Ph.D., professor of physiology at Bar Ilan University in Ramat Gan Israel were co-authors of this study.

In addition to his appointment at the University of Pittsburgh School of Medicine, Dr. Puyana is also a trauma surgeon at the UPMC Presbyterian Trauma Center, where more than 3,000 patients are treated each year. Since 1987, it has been accredited as a Level I trauma center, the highest certification possible, by the Pennsylvania Trauma Systems Foundation.

Funding for this study was provided by the U.S. Army Medical Research Command through a grant to the Center for Innovation in Minimally Invasive Therapies in Boston.

CONTACT:
Maureen McGaffin
Lisa Rossi
PHONE: (412) 647-3555
FAX: (412) 624-3184
E-MAIL:
McGaffinME@upmc.edu
RossiL@upmc.edu

Maureen McGaffin | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>