Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh researchers develop a urinary catheter to monitor oxygen delivery to organs

30.09.2002


Monitoring oxygen delivery to organs is vital for treatment of trauma and critical care patients



When treating trauma and critical care patients after severe hemorrhagic shock, hours and days count. That’s why University of Pittsburgh researchers, working with an Israeli physiology professor, saw the need to develop a "smart" urinary catheter - which is typically used for bladder drainage – that they modified in order to provide clinicians with immediate information about the amount of oxygen organs are receiving. Results of animal studies and preliminary results of the catheter’s use in two patients indicate the device is also less invasive than current techniques.

Julio Clavijo, M.D., visiting research associate professor in the division of surgery and critical care medicine at the University of Pittsburgh School of Medicine, presented these findings today at the American Association for the Surgery of Trauma’s 2002 Annual Meeting at the Hilton at Lake Buena Vista in Orlando, Fla.


When a patient suffers from hemorrhagic shock, the massive loss of blood greatly reduces the amount of oxygen delivered to all organs, which can result in organ damage. Current monitoring techniques to assess oxygen delivery in trauma patients are often invasive and not always applicable in the clinical setting.

"By developing better ways to monitor trauma and critical care patients in the intensive care unit we can implement timely decisions regarding their care," said Juan Carlos Puyana, M.D., F.A.C.S., associate professor of surgery and critical care medicine at the University of Pittsburgh School of Medicine and senior author of the study.

The investigators constructed a urinary catheter with a fluorescent-based fiber optic probe that directly measures blood flow and oxygen utilization. This fiber optic probe is of the same type used by neurosurgeons and anesthesiologists to measure oxygen utilization in the brain.

In animal studies of the catheter, the researchers found that during hemorrhage, changes in blood flow and oxygen delivery to the urethra were correlated. These findings suggest that such information about the clinical status of trauma patients could be collected in a more timely basis and monitored by this less invasive means.

"We hope by using technology such as this we can begin to learn more about the mechanisms of trauma and associated organ failure so we can begin to formulate better outcomes for these patients," added Dr. Puyana.

James van Bastelarr, M.D., a medical student at the University of Groningen in the Netherlands, and Avraham Mayevsky, Ph.D., professor of physiology at Bar Ilan University in Ramat Gan Israel were co-authors of this study.

In addition to his appointment at the University of Pittsburgh School of Medicine, Dr. Puyana is also a trauma surgeon at the UPMC Presbyterian Trauma Center, where more than 3,000 patients are treated each year. Since 1987, it has been accredited as a Level I trauma center, the highest certification possible, by the Pennsylvania Trauma Systems Foundation.

Funding for this study was provided by the U.S. Army Medical Research Command through a grant to the Center for Innovation in Minimally Invasive Therapies in Boston.

CONTACT:
Maureen McGaffin
Lisa Rossi
PHONE: (412) 647-3555
FAX: (412) 624-3184
E-MAIL:
McGaffinME@upmc.edu
RossiL@upmc.edu

Maureen McGaffin | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>