Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh scientist discusses blood cell damage from biomedical devices

26.09.2002


While biomedical devices such as prosthetic heart valves, heart-assist devices, oxygenators, vascular grafts and hemodialysis systems can help to save or significantly extend lives, these same devices also can damage the blood cells which travel through them. Severe consequences can result when blood cells are damaged or broken down, said Marina Kameneva, Ph.D., research associate professor of surgery at the University of Pittsburgh School of Medicine.



Dr. Kameneva will discuss the issue in a plenary lecture on "hemorheological aspects of flow induced blood trauma in artificial organs" on Sept. 26 during a joint meeting of the 11th International Congress of Biorheology and the 4th International Conference on Clinical Hemorheology in Antalya, Turkey. Rheology is the science of the deformation and flow of matter.

"Biomedical devices are widely used to repair or replace a number of cardiovascular system elements," said Dr. Kameneva, a scientist at the University of Pittsburgh’s McGowan Institute for Regenerative Medicine who is one of the few working worldwide whose research focuses on fluid dynamics and artificial blood products. "The successful functioning of these devices strongly depends on the way they disturb blood."


Previous studies of mechanical blood trauma have focused on the complete destruction of red blood cells, but even sub-lethal damage can have an effect, she noted. In fact, there is evidence suggesting that even minor mechanical damage may shorten the lifespan of red blood cells, which deliver oxygen throughout the body.

"Blood cell damage is a major obstacle in the development of a permanent artificial heart, which would help patients with end-stage heart disease to survive and live a normal life without the need of a donor heart transplant," Dr. Kameneva said.

In previous studies, scientists tagged rabbit red blood cells with a fluorescent marker, then subjected them to high-shear stress before returning them to the animal. "Normally, rabbit red blood cells have a lifespan of 30 days," she said. "But within a few days, the stressed cells were gone." At the same time, tagged red blood cells that were not exposed to shear stress were found to have a normal lifespan.

Blood cells put through mechanical stress took on the characteristics of "old cells," which are cleansed from the body by the liver and spleen while the bone marrow pumps out new cells as part of natural physiological recycling. "This allowed us to consider that even what we call sub-lethal mechanical trauma could be a reason for accelerated blood cell aging," she said.

Mechanical stress also deprived red blood cells of some of their native malleability, Dr. Kameneva continued, explaining that cells must be "deformable" in order to squeeze through the smallest vessels and capillaries.

"The normal human red blood cell is 8 microns in diameter," she said. "But some capillaries are 3 microns across. Cells couldn’t pass if they couldn’t change their shape."

Red blood cells that had been stressed also shared other important characteristics with aging cells, such as an increased ability to aggregate -- form stacks of cells – which increases blood viscosity, Dr. Kameneva said. There also is evidence that biomechanical devices decrease the number of white blood cells and platelets to below normal levels, possibly leading to an increased risk of infection or stroke.

"There are abnormally high shear stresses and turbulence within artificial organs, and even blood cell contact with a foreign surface is abnormal," Dr. Kameneva said. "If we can develop a deeper understanding of the interactions of blood flow, blood cells and their mechanical properties, perhaps we can predict blood damage and improve designs of cardiovascular devices to diminish these effects."

ADDITIONAL CONTACT INFORMATION:
Lisa Rossi
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL: RossiL@upmc.edu

Michele Baum | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>