Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to help diabetes and hypoglycemia

26.09.2002


University of Melbourne scientists have found clues to why patients with insulin-dependent diabetes are often unable to sense their need to take life-saving glucose.



The evidence came from a known and potent appetite stimulant released by the brain called Neuropeptide Y (NPY). Studies using diabetic rats have shown the NPY levels in the brains of diabetic rats differ significantly to those of normal rats under conditions of low glucose.

It was known that specific nerves in the brain sense the levels of glucose in the body.


"But how these nerves operate and how the brain tells us we need to eat or we are full, which can help maintain glucose levels, has remained a mystery. Understanding these mechanisms is a major goal of diabetes research," says University of Melbourne pharmacologist Associate Professor Margaret Morris who led the research.

"Our research has provided some insight into these mechanisms and should lead to a better understanding and, ultimately, management of diabetes and hypoglycemia, the life threatening condition faced by diabetics when their blood glucose gets too low," she says.

The study is published in the latest edition of Diabetologia and is supported by the US-based Juvenile Diabetes Research Foundation, the world’s largest funder of research into diabetes.

Previous clinical research had shown that a long-term program of multiple daily insulin injections can protect against the complications of type-1 diabetes such as blindness and kidney failure. The aim of the program is to drive down the high blood glucose levels, characteristic of diabetes, closer to that of non-diabetic individuals.

Normally we keep a relatively constant level of blood glucose by the pancreas constantly adjusting the amount of insulin it releases. A diabetes, blood sugar can only be controlled by injections of insulin. This causes a series of highs and lows in blood glucose. The problem with such an intensive program of insulin injection is that the lows experienced can often be too low placing the person at risk of hypoglycemia.

Studies have shown that people with repeated exposure to hypoglycemic conditions become desensitised to the body’s triggers that inform us we are in this predicament. In the case of NPY, this trigger would be the desire to eat, which would restore blood sugar levels.

The University of Melbourne study compared diabetic and normal rats’ brain responses after periods of low glucose, and then tested their ability to recover upon return to normal glucose levels.

The production of NPY in diabetic rats fell significantly during the period of low glucose. In contrast, the NPY levels in the normal rat remained unchanged.

A second approach looked at the levels of NPY in response to injections of insulin. This time the effects in the two groups were opposite. The normally high NPY levels in the diabetic rat decreased, while normally low NPY levels in the normal rat increased.

"As insulin lowers the blood glucose levels, a response that would normally trigger the desire to eat, it is strange that the NPY levels in diabetic rats drop, an effect that would normally suppress the need to eat," says Morris.

"We know that NPY is linked to the brains ability to sense and control the body’s levels of glucose. Our task now is to understand NPY’s exact role, why it differs in diabetes, what nerves are involved and what, if any, other sensory nerves and stimulants are involved," she says.

JDRF has just provided an additional US$55,000 to fund this research.

More information

Dr Margaret Morris
Department of Pharmacology
The University of Melbourne
Telephone +(61 3) 8344 5745
E-mail mjmorris@unimelb.edu.au

Jason Major
Media officer, Communications and Marketing
The University of Melbourne
Telephone +(61 3) 8344 0181 or 0421 641 506
Fax +(61 3) 9349 4135
E-mail jmajor@unimelb.edu.au

Jason Major | EurekAlert!
Further information:
http://www.unimelb.edu.au/news/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>