Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to help diabetes and hypoglycemia

26.09.2002


University of Melbourne scientists have found clues to why patients with insulin-dependent diabetes are often unable to sense their need to take life-saving glucose.



The evidence came from a known and potent appetite stimulant released by the brain called Neuropeptide Y (NPY). Studies using diabetic rats have shown the NPY levels in the brains of diabetic rats differ significantly to those of normal rats under conditions of low glucose.

It was known that specific nerves in the brain sense the levels of glucose in the body.


"But how these nerves operate and how the brain tells us we need to eat or we are full, which can help maintain glucose levels, has remained a mystery. Understanding these mechanisms is a major goal of diabetes research," says University of Melbourne pharmacologist Associate Professor Margaret Morris who led the research.

"Our research has provided some insight into these mechanisms and should lead to a better understanding and, ultimately, management of diabetes and hypoglycemia, the life threatening condition faced by diabetics when their blood glucose gets too low," she says.

The study is published in the latest edition of Diabetologia and is supported by the US-based Juvenile Diabetes Research Foundation, the world’s largest funder of research into diabetes.

Previous clinical research had shown that a long-term program of multiple daily insulin injections can protect against the complications of type-1 diabetes such as blindness and kidney failure. The aim of the program is to drive down the high blood glucose levels, characteristic of diabetes, closer to that of non-diabetic individuals.

Normally we keep a relatively constant level of blood glucose by the pancreas constantly adjusting the amount of insulin it releases. A diabetes, blood sugar can only be controlled by injections of insulin. This causes a series of highs and lows in blood glucose. The problem with such an intensive program of insulin injection is that the lows experienced can often be too low placing the person at risk of hypoglycemia.

Studies have shown that people with repeated exposure to hypoglycemic conditions become desensitised to the body’s triggers that inform us we are in this predicament. In the case of NPY, this trigger would be the desire to eat, which would restore blood sugar levels.

The University of Melbourne study compared diabetic and normal rats’ brain responses after periods of low glucose, and then tested their ability to recover upon return to normal glucose levels.

The production of NPY in diabetic rats fell significantly during the period of low glucose. In contrast, the NPY levels in the normal rat remained unchanged.

A second approach looked at the levels of NPY in response to injections of insulin. This time the effects in the two groups were opposite. The normally high NPY levels in the diabetic rat decreased, while normally low NPY levels in the normal rat increased.

"As insulin lowers the blood glucose levels, a response that would normally trigger the desire to eat, it is strange that the NPY levels in diabetic rats drop, an effect that would normally suppress the need to eat," says Morris.

"We know that NPY is linked to the brains ability to sense and control the body’s levels of glucose. Our task now is to understand NPY’s exact role, why it differs in diabetes, what nerves are involved and what, if any, other sensory nerves and stimulants are involved," she says.

JDRF has just provided an additional US$55,000 to fund this research.

More information

Dr Margaret Morris
Department of Pharmacology
The University of Melbourne
Telephone +(61 3) 8344 5745
E-mail mjmorris@unimelb.edu.au

Jason Major
Media officer, Communications and Marketing
The University of Melbourne
Telephone +(61 3) 8344 0181 or 0421 641 506
Fax +(61 3) 9349 4135
E-mail jmajor@unimelb.edu.au

Jason Major | EurekAlert!
Further information:
http://www.unimelb.edu.au/news/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>