Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to help diabetes and hypoglycemia

26.09.2002


University of Melbourne scientists have found clues to why patients with insulin-dependent diabetes are often unable to sense their need to take life-saving glucose.



The evidence came from a known and potent appetite stimulant released by the brain called Neuropeptide Y (NPY). Studies using diabetic rats have shown the NPY levels in the brains of diabetic rats differ significantly to those of normal rats under conditions of low glucose.

It was known that specific nerves in the brain sense the levels of glucose in the body.


"But how these nerves operate and how the brain tells us we need to eat or we are full, which can help maintain glucose levels, has remained a mystery. Understanding these mechanisms is a major goal of diabetes research," says University of Melbourne pharmacologist Associate Professor Margaret Morris who led the research.

"Our research has provided some insight into these mechanisms and should lead to a better understanding and, ultimately, management of diabetes and hypoglycemia, the life threatening condition faced by diabetics when their blood glucose gets too low," she says.

The study is published in the latest edition of Diabetologia and is supported by the US-based Juvenile Diabetes Research Foundation, the world’s largest funder of research into diabetes.

Previous clinical research had shown that a long-term program of multiple daily insulin injections can protect against the complications of type-1 diabetes such as blindness and kidney failure. The aim of the program is to drive down the high blood glucose levels, characteristic of diabetes, closer to that of non-diabetic individuals.

Normally we keep a relatively constant level of blood glucose by the pancreas constantly adjusting the amount of insulin it releases. A diabetes, blood sugar can only be controlled by injections of insulin. This causes a series of highs and lows in blood glucose. The problem with such an intensive program of insulin injection is that the lows experienced can often be too low placing the person at risk of hypoglycemia.

Studies have shown that people with repeated exposure to hypoglycemic conditions become desensitised to the body’s triggers that inform us we are in this predicament. In the case of NPY, this trigger would be the desire to eat, which would restore blood sugar levels.

The University of Melbourne study compared diabetic and normal rats’ brain responses after periods of low glucose, and then tested their ability to recover upon return to normal glucose levels.

The production of NPY in diabetic rats fell significantly during the period of low glucose. In contrast, the NPY levels in the normal rat remained unchanged.

A second approach looked at the levels of NPY in response to injections of insulin. This time the effects in the two groups were opposite. The normally high NPY levels in the diabetic rat decreased, while normally low NPY levels in the normal rat increased.

"As insulin lowers the blood glucose levels, a response that would normally trigger the desire to eat, it is strange that the NPY levels in diabetic rats drop, an effect that would normally suppress the need to eat," says Morris.

"We know that NPY is linked to the brains ability to sense and control the body’s levels of glucose. Our task now is to understand NPY’s exact role, why it differs in diabetes, what nerves are involved and what, if any, other sensory nerves and stimulants are involved," she says.

JDRF has just provided an additional US$55,000 to fund this research.

More information

Dr Margaret Morris
Department of Pharmacology
The University of Melbourne
Telephone +(61 3) 8344 5745
E-mail mjmorris@unimelb.edu.au

Jason Major
Media officer, Communications and Marketing
The University of Melbourne
Telephone +(61 3) 8344 0181 or 0421 641 506
Fax +(61 3) 9349 4135
E-mail jmajor@unimelb.edu.au

Jason Major | EurekAlert!
Further information:
http://www.unimelb.edu.au/news/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>