Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to replacing immune cells shrink tumors in patients with melanoma

20.09.2002


A new approach to cancer treatment that replaces a patient’s immune system with cancer-fighting cells can lead to tumor shrinkage, researchers report today in the journal Science*. The study demonstrates that immune cells, activated in the laboratory against patients’ tumors and then administered to those patients, can attack cancer cells in the body.



The experimental technique, known as adoptive transfer, has shown promising results in patients with metastatic melanoma who have not responded to standard treatment. With further research, scientists hope this approach may have applications to many cancer types, as well as infectious diseases such as AIDS.

In the study, 13 patients with metastatic melanoma (a deadly form of skin cancer) who had not responded to standard treatments were treated with immune cells produced in the laboratory specifically to destroy their tumors. The treatment resulted in at least 50 percent tumor shrinkage in six of the patients, with no growth or appearance of new tumors. Four additional patients had some cancer growths disappear.


Researchers have tried previously to treat cancer with immune cells but the cells did not survive well in the body. "In the past, only a fraction of a percent of the cells we injected were able to survive, and they would persist for only a few days," said Steven A. Rosenberg, M.D., Ph.D., of the National Cancer Institute, the lead researcher on the study.

Improvements in the way immune cells are generated in the laboratory and the way patients’ bodies are prepared to receive them, however, have led to dramatically different results. "We have been able to generate a very large number of immune cells that appear in the blood and constitute a majority of the immune system of the patient. These persist for over four months and are able to attack the tumor," Rosenberg said.

The adoptive transfer technique fights cancer with T cells, immune cells that recognize and kill foreign cells that have invaded the body. Researchers used a small fragment of each patient’s melanoma tumor to grow T cells in the laboratory, using T cells originally taken from the patients. Exposure to the tumor activated the immune cells so that they would recognize and attack cells from each specific cancer.

Once the T cells had multiplied to a sufficient number to be used for treatment, they were administered to patients. Patients were also given a high dose of a protein called interleukin-2 (IL-2), which stimulates continued T cell growth in the body. Prior to the immunotherapy, chemotherapy had been used to deplete patients’ own immune cells, which had proven ineffective at fighting the cancer. Diminishing the old cells provided an opportunity for the new T cells to repopulate patients’ immune systems. Analysis of blood and tumor samples from many of the patients who responded favorably to the treatment revealed that the administered immune cells were thriving, multiplying rapidly, and attacking tumor tissue. T cells activated against melanoma became the major component in patients’ immune systems. They persisted for several months and were able to destroy metastases throughout the body.

Over time, patients’ old immune systems recovered, restoring their ability to fight infections. Researchers report that among the patients in the study, only occasional opportunistic infections developed during treatment.

Other side effects were mild autoimmune disorders. T cells act by recognizing a protein fragment called an antigen on the outside of the tumor cells. Antigens found on tumor cells may also be found on certain normal cells in the body, making them vulnerable to attack. Autoimmune effects among the patients in the study were mild and easily controlled.

Although the treatment is highly experimental, researchers are optimistic that it may, in the future, extend beyond the treatment of patients with melanoma. It should be possible, they say, to raise immune cells that will recognize and attack many tumor types.

Similarly, the same technique could potentially be used to treat some infectious diseases, such as AIDS.

NCI Press Office | EurekAlert!
Further information:
http://www.cancer.gov

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>